Автор: Лопатин Олег Петрович

Рубрика: Технические науки

Опубликовано в Молодой учёный №10 (90) май-2 2015 г.

Дата публикации: 15.05.2015

Статья просмотрена: 17 раз

Библиографическое описание:

Лопатин О. П. Влияние рециркуляции отработавших газов на показатели процесса сгорания газодизеля // Молодой ученый. — 2015. — №10. — С. 255-257.

В работе представлены результаты применения компримированного природного газа и рециркуляции отработавших газов на показатели процесса сгорания дизеля размерности 4Ч 11,0/12,5 в зависимости от изменения установочного угла опережения впрыскивания топлива.

Ключевые слова:дизель, газодизель, природный газ, рециркуляция отработавших газов, показатели процесса сгорания.

 

На фоне неизбежного увеличения цен на нефтепродукты и ухудшающейся экологической обстановкой, связанной, прежде всего, с увеличением количества энергоустановок, работающих на жидком нефтяном топливе, происходит усиленное внедрение альтернативных источников энергии. В работе представлены результаты экспериментальных исследований, проведенных на базе научно-исследовательской лаборатории кафедры тепловых двигателей, автомобилей и тракторов Вятской государственной сельскохозяйственной академии (рис. 1), по улучшению экологических показателей дизеля 4Ч 11,0/12,5 путем применения компримированного природного газа (КПГ) и рециркуляции отработавших газов (РОГ) [1–3].

Рис. 1. Общий вид газодизеля 4Ч 11,0/12,5 с системой РОГ, установленного на стенде

 

На рис. 2 представлены показатели процесса сгорания дизеля 4Ч 11,0/12,5 в зависимости от изменения установочного угла опережения впрыскивания топлива для номинальной частоты вращения (n=2200 мин-1) и частоты, соответствующей максимальному крутящему моменту (n=1700 мин-1) [4, 5].

а

б

Рис. 2. Влияние применения РОГ на показатели процесса сгорания дизеля 4Ч 11,0/12,5 при работе на КПГ в зависимости от изменения установочного угла опережения впрыскивания топлива: а — n = 2200 мин-1; б — n = 1700 мин-1;  — дизельный процесс;  — газодизельный процесс;  — рециркуляция 10 %;  — рециркуляция 20 %

 

Из графиков (рис. 2, а) видно, что при работе по газодизельному процессу с РОГ снижается максимальное давление газов в цилиндре двигателя и при Θвпр = 26 градусов при работе с 10 %-ной РОГ составляет 9,7 МПа, что на 4,9 % ниже, чем при чисто газодизельном процессе и на 8,2 % выше дизельного процесса. Снижается жесткость процесса сгорания и при Θвпр = 26 градусов (dp/dφ)max составляет 0,95 МПа/град. Незначительно увеличивается угол, соответствующий периоду задержки воспламенения. При установочном угле опережения впрыскивания топлива 23 градуса максимальное давление в цилиндре дизеля при газодизельном процессе составляет 8,5 МПа, то при газодизельном процессе с 10 %-ной РОГ — 8,2 МПа, что на 3,5 % ниже, чем при чисто газодизельном процессе и всего на 1,2 % отличается от дизельного процесса [6, 7].

Жесткость процесса сгорания при установочном угле опережения впрыскивания топлива 23 градуса при газодизельном процессе с 10 %-ной РОГ составляет 0,60 МПа/град, что на 15,5 % ниже чисто газодизельного процесса и на 36,8 % ниже, чем при работе с 10 %-ной РОГ при установочном угле опережения впрыскивания топлива 26 градусов.

Таким образом, по показателям процесса сгорания необходимо для газодизельного процесса с РОГ устанавливать угол опережения впрыскивания топлива Θвпр = 23 градуса вместо 26 градусов при дизельном процессе [8, 9].

Из графиков (рис. 2, б) можно отметить, что при работе по газодизельному процессу с РОГ снижается максимальное давление газов в цилиндре двигателя, одновременно снижается (dp/dφ)max и степень повышения давления. С увеличением степени рециркуляции увеличивается угол, соответствующий периоду задержки воспламенения [10].

Подводя краткие итоги, можно отметить, что уменьшение показателей процесса сгорания при работе дизеля на КПГ с РОГ объясняется, в первую очередь, ограниченностью коэффициента избытка воздуха, что приводит к увеличению угла, соответствующего периоду задержки воспламенения, то есть процесс сгорания протекает за меньший период времени и менее интенсивно, что в свою очередь будет препятствовать окислению азота метано-воздушной смеси в условиях недостатка кислорода, замедлять процесс образования оксидов азота в цилиндре и соответственно снижать содержание оксидов азота в отработавших газах дизеля.

 

Литература:

 

1.         Лиханов В. А., Лопатин О. П. Исследование экологических показателей дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 26–28.

2.         Лиханов В. А., Лопатин О. П. Улучшение экологических показателей тракторного дизеля путем применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий // Тракторы и сельхозмашины. 2015. № 3. С. 3–6.

3.         Лопатин О. П. Влияние применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий на содержание токсичных компонентов в отработавших газах тракторного дизеля 4Ч 11,0/12,5 // Молодой ученый. 2015. № 6–5 (86). С. 13–15.

4.Лиханов В. А., Лопатин О. П. Образование и нейтрализация оксидов азота в цилиндре газодизеля: Монография. — Киров: Вятская ГСХА, 2004. -106 с

5.         Лопатин О. П. Химизм процесса образования оксидов азота в цилиндре газодизеля // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 28–30.

6.         Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля путем применения этаноло-топливной эмульсии // Тракторы и сельхозмашины. 2013. № 2. С. 6–7.

7.         Лиханов В. А., Лопатин О. П., Анфилатов А. А. Снижение содержания оксидов азота в отработавших газах дизеля путем применения метанола с использованием двойной системы топливоподачи // Тракторы и сельхозмашины. 2012. № 5. С. 5–8.

8.         Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Транспорт на альтернативном топливе. 2012. № 4 (28). С. 70–73.

9.         Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля с промежуточным охлаждением наддувочного воздуха // Тракторы и сельхозмашины. 2011. № 2. С. 6–7.

10.     Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля с турбонаддувом путем применения природного газа // Тракторы и сельхозмашины. 2010. № 1. С. 11–13.

Основные термины (генерируются автоматически): процесса сгорания, опережения впрыскивания топлива, оксидов азота, показатели процесса сгорания, экологических показателей дизеля, процесса сгорания дизеля, Тракторы и сельхозмашины, оксидов азота в цилиндре, природного газа, дизеля 4Ч, содержания оксидов азота, газах дизеля, периоду задержки воспламенения, применения природного газа, газодизельном процессе, природного газа и рециркуляции, Лопатин О. П. Улучшение экологических показателей, сгорания дизеля 4Ч, угле опережения впрыскивания, установочном угле опережения.

Ключевые слова

дизель, природный газ, рециркуляция отработавших газов, газодизель, показатели процесса сгорания.

Обсуждение

Социальные комментарии Cackle
Задать вопрос