Описан способконтроля над состоянием головного выключателя линии, питающей трансформаторную подстанцию при исчезновении напряжения в ней, разработана структурная схема и описана ее работа с изображением выходных сигналов.
Ключевые слова: силовой трансформатор, вводной выключатель шин подстанции, датчик напряжения, головной выключатель.
Describes a method for controlling the state of the brain switch line supplying the transformer substation voltage failure in it, developed a block diagram and described her work with the image of the output signals.
Keywords:power transformer, main switch tires substation voltage sensor head switch.
- Исчезновение напряжения в линии, питающей трансформаторную подстанцию возможно по разным причинам:
- плановое отключение;
- аварийное отключение;
- ложное отключение головного выключателя (ГВ);
- отказ отключения секционирующего выключателя (если он установлен в этой линии) и отключение ГВ;
- возможны и другие.
И, если плановое отключение линии однозначно определяет отключенное состояние ГВ, то при других ситуациях информация о состоянии ГВ остается неизвестной. Для однозначного определения включенного им отключенного состояния ГВ разработан способ [1]. Используя этот способ разработана структурная схема контроля над состоянием ГВ при исчезновении напряжения в линии, где он установлен. Такой контроль осуществляется следующим образом.
С момента исчезновения напряжения на трансформаторе начинают отсчет времени выдержки автоматического повторного включения (АПВ) ГВ линии, при этом в момент окончания этого отсчета контролируют появление напряжения на трансформаторе. И если оно не появилось, то в линию посылают зондирующий импульс, измеряют время его прохождения до точки отражения, вычисляют расстояние до этой точки и сравнивают его с расстоянием до места установки ГВ. И, если вычисленное расстояние больше, чем расстояние до места установки ГВ, то делают вывод о включенном состоянии ГВ линии. А, если вычисленное расстояние равно расстоянию до места установки ГВ, то делают вывод о его отключенном состоянии.
Структурная схема контроля (рис. 1) состоит из датчика напряжения (ДН)-1, элементов: НЕ-10 и 12, ПАМЯТЬ-11, ЗАДЕРЖКА-13, ОДНОВИБРАТОР-14, И-15, блока обработки информации (БОИ)-16, генератора зондирующих импульсов (ГЗИ)-17 и регистрирующего устройства (РУ)-19.
Рис. 1. Упрощенная однолинейная схема трансформаторной подстанции и структурная схема контроля
На рис. 1 приняты обозначения: 1 и 3 — головной и вводной выключатели; 2 — силовой трансформатор; 4–8 — линии, отходящие от шин подстанции.
Рис. 2. Диаграммы выходных сигналов структурной схемы
На рис. 2 моменты времени: t0 — начальный момент времени; t1 — момент времени исчезновения напряжения на трансформаторе; t2 — момент окончания времени выдержки АПВ ГВ-1.
Работа этой схемы осуществляется следующим образом.
В нормальном режиме работы сети на выходе ДН-9 есть сигнал (рис. 2, диагр.20) при этом на выходе элемента НЕ-10 сигнала нет (рис. 2, диагр. 21) также нет сигнала на выходе элемента НЕ-12 (рис. 2, диагр. 23) поэтому схема находится в режиме контроля.
При исчезновении напряжения на трансформаторе 2, по какой-либо причине, с выхода ДН-9 сигнал исчезнет (рис. 2, диагр. 20, момент временит t1) и появятся выходные сигналы с элементов НЕ-10 и 12 (рис. 2, диагр. 21 и 23 соответственно). Сигнал с элемента НЕ-10 поступит на вход элемента ПАМЯТЬ-11, запомнится им (рис. 2, диагр. 22) и поступит на вход элемента ЗАДЕРЖКА-13. С выхода этого элемента сигнал появится через время выдержки АПВ ГВ-1 (рис. 2, диагр. 24) и поступит на вход элемента ОДНОВИБРАТОР-14. Этот элемент произведет одно колебание (рис. 2, диагр. 25) этот сигнал «сбросит» память с элемента 11 (рис. 2, диагр. 22, момент временит t2), и он также поступит на первый вход элемента И-15. При этом на втором входе уже будет сигнал с элемента НЕ-12 (рис. 2, диагр. 23), поэтому он сработает и появится его выходной сигнал (рис. 2, диагр. 26). Сигнал этого элемента поступит на вход БОИ-16. При этом с его выхода в ГЗИ-17 пойдет сигнал (рис. 2, диагр. 27) который обеспечит посылку этим генератором зондирующего импульса в линию (рис. 2, диагр. 28). Этот импульс, дойдя до точки отражения, вернется обратно, поступит в ПЗИ-18, и с его выхода (рис. 2, диагр. 29) поступит в БОИ-16. Этот элемент определит время прохождения задерживающего импульса до точки отражения, вычислит расстояние до этой точки и сравнит его с расстоянием до места установки ГВ-1. И, если вычисленное расстояние будет больше, чем расстояние до места установки ГВ-1, то с первого выхода БОИ-16 (рис. 2, диагр. 27) в РУ-19 поступит сигнал, который обеспечит появление в нем информации о том, что ГВ 1 включен (рис. 2, диагр. 30). А, если вычисленное расстояние равно расстоянию до места установки ГВ-1, то со второго выхода БОИ-16 (рис. 2, диагр. 27) в РУ-19 поступит сигнал, который обеспечит появление в нем информации о том, что ГВ-1 отключен (рис. 2, диагр. 30).
Таким образом, при использовании разработанной структурной схемы можно контролировать состояние головного выключателя линии, питающей трансформаторную подстанцию, при исчезновении напряжения в ней. Это позволит при возникновении аварийных и ненормальных режимов сократить время на устранение возникших неисправностей, что будет способствовать повышению надежности электроснабжения.
По аналогии с вышерассмотренным контролем и с учетом [2,3,4,5,6,7] можно разработать структурную схему дистанционного контроля над состоянием или изменением состояния головного выключателя линии, питающей трансформаторную подстанцию, при разных состояниях линии электропередач.
Литература:
1. Патент № 2505906. Способ контроля включенного состояния головного выключателя линии, питающей трансформаторную подстанцию при исчезновении напряжения в ней / Суров Л. Д., Сурова Т. Б., 2014.
2. Патент № 2503108. Способ контроля отключения и отказа автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию при неустойчивом коротком замыкании / Суров Л. Д., Суров И. Л., 2013.
3. Патент № 2502167. Способ контроля отключения, автоматического повторного включения и отказа отключения головного выключателя линии при переходе двухфазного короткого замыкания в трехфазное / Суров Л. Д., Суров И. Л., 2013.
4. Патент № 2502178. Способ контроля ложного или аварийного отключения и отказа автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию, с определением вида короткого замыкания / Суров Л. Д., Сурова Т. Б., Махиянова Н. В., 2013.
5. Патент № 2504068. Способ контроля отключения головного выключателя линии, питающей трансформаторную подстанцию при исчезновении напряжения в ней / Суров Л. Д., Сурова Т. Б., Махиянова Н. В., 2014.
6. Способ контроля вида неустойчивого короткого замыкания при успешном автоматическом повторном включении головного выключателя линии, питающей трансформаторную подстанцию / Суров Л. Д., 2014.
7. Способ запрета автоматического повторного включения головного выключателя линии, питающей трансформаторную подстанцию с определение вида короткого замыкания / Суров Л. Д., 2014.