Оценка надежности и долговечности металлоконструкций | Статья в журнале «Молодой ученый»

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №10 (57) октябрь 2013 г.

Дата публикации: 25.09.2013

Статья просмотрена: 1080 раз

Библиографическое описание:

Черняев А. И., Трефилов В. А. Оценка надежности и долговечности металлоконструкций // Молодой ученый. — 2013. — №10. — С. 225-228. — URL https://moluch.ru/archive/57/7701/ (дата обращения: 25.05.2018).

Благодаря разнообразию механических и эксплуатационных характеристик металл в современном мире является одним из наиболее распространенных и используемых материалов. Многообразие сплавов позволяет использовать его во всех промышленных отраслях, таких как строительство зданий и сооружений, двигателестроение, создание коммуникаций, путепроводов и т. д. Существует множество рекомендаций, ГОСТов, СНиПов и стандартов, которые определяют выбор металлов при производстве конкретных изделий. Не смотря на это, в СМИ часто можно встретить сообщения об авариях, происшествиях и катастрофах, связанных с разрушением или отказом металлических элементов конструкций. Более того, в строительной практике известны такие примеры, когда причиной аварии каменных, бетонных, деревянных и других конструкций были дефекты металлических элементов, входящих в общий конструктивный комплекс.

Одной из основных причин аварий металлоконструкций являются аварии, наступающие вследствие хрупкого разрушения. Хрупкое разрушение стали может иметь место:

-          при работе конструкций в условиях низких температур;

-          в случае применения материалов, подверженных хрупкому разрушению, при этом аварии могут иметь место и при нормальных температурах;

-          при действии на конструкцию ударных и других видов динамических нагрузок;

-          под влиянием различных дефектов в основном металле и сварных швах [1].

Техническое состояние стальных конструкций определяют на основе оценки следующих факторов:

-          — наличия отклонений фактических размеров поперечных сечений стальных элементов от проектных;

-          — наличия дефектов и механических повреждений;

-          — состояния сварных, заклепочных и болтовых соединений;

-          — степени и характера коррозии элементов и соединений;

-          — прогибов и деформаций;

-          — прочностных характеристик стали;

-          — наличия отклонений элементов от проектного положения [2].

Анализ большого числа аварий и аварийных состояний конструкций позволяет прийти к выводу, что многие из них происходят в результате снеговой перегрузки, на которую при эксплуатации сооружений не обращают должного внимания. Принятые в свое время к эксплуатации сооружения, зачастую выполненные по типовым проектам, рассчитанные на усредненные, а не на реальные для каждого конкретного объекта нагрузки, продолжают эксплуатировать, не обращая внимания на несоответствие между проектными и реальными нагрузками [1].

Дефекты, допущенные при изготовлении конструкции, не всегда сразу приводят к аварии. Часто даже грубые отступления от проекта и технических условий сказываются не сразу, а при неблагоприятном сочетании нескольких факторов. В свою очередь, внутренние дефекты материала неизбежно приводят к разрушению металла.

Наличие концентраторов напряжений в виде внутренних дефектов, таких, как отверстия, прорези, трещины, поры, крупные неметаллические включения, расположенные в местах и на участках с высокими местными напряжениями и ориентированные поперек направления действующих растягивающих напряжений, могут привести к преждевременному разрушению элемента, и без должного контроля с помощью нормативных документов [3–5] к разрушению всей конструкции.

Дефекты в металле делятся на 3 основных типа: возникшие на стадии проектирования, возникшие при изготовлении и транспортировке, возникшие при монтаже [6].

В процессе изготовления металлические изделия проходят сложный технологический цикл. Он включает следующие основные операции: плавка, вакуумирование, внепечная обработка, литье, обработка давлением, термическая обработка, механическая обработка, соединение с другими деталями. На этапах изготовления, расплавленная сталь вступает в контакт с кислородом, расплавленным флюсом, раскислителями и инертными газами, вследствие чего при кристаллизации в ней образуются поры, пустоты, усадочные раковины, крупные неметаллические включения, которые при обработке давлением и изготовлении проката вытягиваются и расплющиваются, тем самым создавая трещины, расслоения, волосовины, становясь сильными концентраторами напряжений.

Внутренние дефекты объемного типа (раковины, шлаки, поры, «скворечники» и др.) выявляются независимо от направления радиационного или ультразвукового излучения. Слабораскрытые дефекты плоскостного типа (трещины, закаты, заливины и др.) лучше обнаруживаются при радиационном контроле, когда излучение направлено вдоль плоскости дефекта, а при ультразвуковом контроле — когда излучение направлено перпендикулярно плоскости дефекта [7].

На производстве многие дефекты при малых размерах допускаются в изделии и не требуют исправления, тем не менее, их количество и расположение может оказать решающее воздействие на надежность и долговечность ответственных металлических элементов.

Для снижения риска разрушения необходимо более тщательно подходить к вопросу оценки состояния, используя при этом современные технологии, а так же усовершенствовать существующие методы прогнозирования надежности стальных конструкций и элементов.

Наиболее распространена статистическая оценка надежности элементов, где система состоит из n элементов. Каждый элемент случайно может находиться либо в рабочем состоянии, либо в состоянии отказа. Так, например, в работе [8] представлен расчет зоны наиболее вероятного усталостного разрушения оси шарнирного соединения с использованием результатов механических испытаний цилиндрических пропорциональных образцов, и на их основе сформулированы выводы о наиболее надежных областях металла. Не смотря на возможность быстро рассчитать надежность любых систем, в том числе неприводимых, основной недостаток такого метода — статистический расчет получается приближенным и только для конкретных числовых значений.

Существует аналитический метод расчета надежности, который подразумевает представление зависимости y(X) в виде надежностного графа. Достоинство аналитического метода заключается в возможности выразить искомую характеристику безотказной работы элемента через заданные параметры в общем виде, но из-за трудоемкости расчета используется реже, чем статистический.

Для оценки надежности и долговечности в зависимости от напряжений вызываемых давлением, температурой, вибрациями и т. п., возможно применение модели «нагрузка — несущая способность», основная идея которой заключается в том, что под действием нагрузки несущая способность системы постепенно уменьшается до тех пор, пока система не откажет [9]. Ее основной недостаток заключается в том, что при большом числе факторов, действующих на систему, нахождение вероятности отказа превращается в сложную математическую задачу, решение которой даже численными методами с применением ЭВМ весьма трудоемко.

Существует множество подходов и различных методик оценки надежности, так например, в работах [10,11,12] представлены методики расчета надежности по предельным состояниям с использованием математической модели. В диссертациях представлен обширный обзор существующих методик расчета надежности, а так же методики расчета основанные на данных о несущей способности, пластических деформациях конструкций, и их устойчивости. Тем не менее, представленные методики затруднительны для реализации непосредственно во время эксплуатации, так как в некоторых случаях необходим постоянный контроль состояния металла для осуществления своевременного реагирования и предотвращения аварий.

Несмотря на обширное количество существующих методик расчета надежности, в настоящее время нет ни одной, которая позволяла бы достаточно быстро и объективно, исходя из состояния материала оценить долговечность конструкции и дать рекомендации по её использованию на основе внутренних дефектов материала, охватывала все возможные изменения погодных условия, влияние среды, а так же позволяла бы контролировать состояние элементов конструкции в любой момент времени.

Таким образом, существует научная задача разработки инженерной методики оценки долговечности металлических конструкций на основе анализа структуры материала, действующих и возможных нагрузок и влияния внешней среды.

На данный момент существует методика оценки вероятности отказа элемента, надежности и долговечности, основанная на структурно-энергетической теории отказов [13]. Структурно — энергетическая теория отказов, позволяет легко оценить влияние структурных факторов (количества и размеров чувствительных структур материалов) на форму кривой функции распределения энергии разрушения (рис. 1), а, следовательно, на надежность элементов и на этой основе разработать конкретные рекомендации по технологическому обеспечению заданного уровня надежности и качества элементов.

Рис. 1 Функция распределения энергии разрушения

Зависимость вероятности отказа от величины энергетического воздействия будет простой экспонентой:

,

где b — вариация размеров чувствительных структур;

е — величина энергетического воздействия.

Вероятность безотказной работы P(t) является обратной величиной вероятности отказа и определяется следующим образом:

Используя следующее уравнение, представляется возможным определить время безотказной работы детали:

,

где I — величина энергетического воздействия;

α — коэффициент перехода из одного состояния в другое;

t — время работы элемента.

Коэффициент перехода α определяется следующим образом:

где tcp — среднее время работы элементов до отказа;

t0 — гарантированное время работы элемента;

σ — дисперсия энергии возникновения отказа.

Представленная методика оценки была разработана и опробована на тонкостенных образцах, толщиной 0.1–0.5 мм, тем не менее, по мнению авторов, её применение возможно также и на более габаритных деталях и элементах, испытывающих в разы большие нагрузки. Исходя из этого была сформулирована и поставлена задача по проведению экспериментов на образцах и реально используемых узлах металлических конструкций, выполнению усталостных разрушений, для сравнения расчетных результатов и полученных опытным путем, а так же разработке методики, которая бы позволяла максимально точно оценить долговечность металлической конструкции исходя из условий изготовления, эксплуатации, и изменения свойств материала с течением времени.

Литература:

1.         Лащенко М. Н. Аварии металлических конструкций зданий и сооружений Л.: Стройиздат, 1969. — 184 с.

2.         Коробейников О. П., Панин А. И., Зеленов П. Л. Обследование технического состояния зданий и сооружений (основные правила): учебное пособие / О. П. Коробейников, А. И. Панин, П. Л. Зеленов; Нижегор. гос. архитектур.-строит. ун-т.– Н.Новгород: ННГАСУ, 2011. — 55 с.

3.         ГОСТ 23118–99. Конструкции стальные строительные. Общие технические условия. — Введ. 2001–01–01. Госстрой России. — М.: ГУП ЦПП, 2001. — 41 с.

4.         СНиП 3.03.01–87. Несущие и ограждающие конструкции. — Введ. 1988–01–07. Госстрой СССР. — М.: ЦИТП Гос-строя СССР, 1989. — 113 с.

5.         СП 53–101–98. Изготовление и контроль качества стальных строительных конструкций. — Введ. 1999–01–01. Гос-строй России. — М.: ГУП ЦПП, 1999. — 36с.

6.         О. В. Евдокимцев, О. П. Самсонова Классификация дефектов и повреждений металлических конструкций, обнаруженных на стадии возведения зданий и сооружений // Труды ТГТУ. Выпуск № 21 / Тамбов. Издательство ТГТУ / 2008

7.         А. К. Гурвич, И. Н. Ермолов, С. Г. Сажин. Неразрушающий контроль. Кн. 1. Общие вопросы. М.: Высшая школа. 1992. 242 с.

8.         Густов Ю. И., Воронина И. В., Катанина А. Г. Оценка надежности металлических изделий по деформационно-энергетическим показателям // сборник трудов XII-й Международной научно-технической конференции «Новые материалы и технологии в машиностроении — 2010". — Брянск.: 2010 электр. ресурс.

9.         Острейковский, В. А. Теория надежности: Учеб. для вузов / В. А. Острейковский. — М.: Высш. шк., 2003. — 463 с.

10.     Плотникова О. С. Определение надежности металлических конструкций в составе зданий и сооружений при ограниченной статистической информации о контролируемых параметрах: автореф. дис. на соиск. учен. степ. канд. техн. наук, [С.-Петерб. гос. архитектур.-строит. ун-т]. — Санкт-Петербург: 2008. — 20 с.

11.     Кошелева Ж. В. Оценка несущей способности, надежности и остаточного ресурса элементов железобетонных конструкций при ограниченной информации о контролируемых параметрах: автореф. дис. на соиск. учен. степ. к.т.н. [С.-Петерб. гос. архитектур.-строит. ун-т]. — СПб.: 2004. — 24 c.

12.     Галаева Н. Л. Расчет надежности несущих элементов при ограниченной информации о параметрах модели предельных состояний: автореф. дис. на соиск. учен. степ. к.т.н. [Вологод. гос. техн. ун-т]. — Санкт-Петербург: 2010. — 24 с.

13.              Деев В. С., Трефилов В. А. Надежность технических систем и техногенный риск. Часть 3: Структурно-энергетическая теория отказов: учеб. пособие. — Пермь: издательство ПНИПУ. -2012. С. 167.

Основные термины (генерируются автоматически): энергетическое воздействие, дефект, основной недостаток, хрупкое разрушение, внутренний дефект материала, существующая методика расчета надежности, коэффициент перехода, плоскость дефекта, обработка давлением, несущая способность, конструкция, элемент, нагрузка.


Обсуждение

Социальные комментарии Cackle
Задать вопрос