В статье автор исследует трудности, возникающие в процессе перевода научно-популярных текстов по искусственному интеллекту.
Ключевые слова: искусственный интеллект, текст, термин, аббревиатура, переводческие трансформации, информационный запас, язык программирования.
С развитием технологий искусственного интеллекта (ИИ) всё чаще возникает потребность в переводе литературы данной области для людей, не обладающих специальными знаниями по данной тематике. Научно-популярные тексты созданы для популяризации научных знаний и представляют сложные концепции в доступной форме. Тексты данного типа обладают специфическими особенностями, из-за чего переводчики сталкиваются с рядом трудностей на этапе перевода и постредактирования. Данная работа освещает эти сложные моменты, предлагая уделять им особое внимание в процессе работы над переводом.
Тексты в области технологий искусственного интеллекта, не только технические, но также и научно-познавательного характера, характеризуются частным использованием специализированной лексики и терминов, которые могут оказаться непонятными для обычного читателя. В таком случае одной из наиболее явных трудностей представляется подбор эквивалентных терминов в языке перевода. По мнению О. С. Ахмановой, термин — это «слово или словосочетание специального языка, создаваемое для точного выражения специальных понятий и обозначения специальных предметов» [1, с. 474]. Термины (терминологические слова) подразумевают использование целой терминологии отдельной области знаний. Поскольку сфера информационных технологий, а в частности искусственного интеллекта, развивается стремительно, её терминологическая база постоянно расширяется. Многие слова оказываются совершенно незнакомыми русскоязычному читателю. Переводчик должен быть внимателен к этому и стремиться найти оптимальное решение.
Чаще всего для того, чтобы перевести терминологическую единицу применяются следующие переводческие трансформации: калькирование, заимствование термина без его перевода, транскрипция и транслитерация, семантический эквивалент, экспликация (описательный перевод), а также возможно сочетание нескольких приемов перевода (например, транскрипция и описательный перевод). Калькированием называется «способ перевода лексической единицы оригинала путем замены ее составных частей — морфем или слов их лексическими соответствиями в ПЯ» [3, с. 173]. Таким образом, создаётся новое понятие, которое копирует структуру исходной лексической единицы и может считаться однозначным эквивалентом определённого термина: adaptive learning — адаптивное обучение, expert system shell — экспертная система-оболочка, adaptive resampling and combining — адаптивная перевыборка и комбинирование. В последнее время подавляющее число терминов попадает в русский язык путём транслитерирования, методом «перевода лексической единицы оригинала путем воссоздания ее формы с помощью букв ПЯ» [3, с. 173]. Например, coding — кодирование, tokenization — токенизация, bioinformatician — биоинформатик. Это, очевидно, связано с усложнением технологий и терминологии. При переводе научно-популярных текстов переводчик обладает возможностью эксплицировать, то есть описать термин, а не переводить его, чтобы добиться понимания читателем определённого комплексного понятия. Так, термин «black box testing» будет правильнее перевести не как «тестирование по стратегии чёрного ящика», а скорее «тестирование без доступа к внутренней структуре компонентов системы».
В специализированных текстах в сфере информационных технологий довольно часто встречаются большое количество аббревиатур, аналогов которых нет в русском языке. При их переводе можно, например, заимствовать сокращение с сохранением латинского написания, использовать полное слово, если нет устоявшейся аббревиатуры в русском языке, или же использовать русскую аббревиатуру, давая пояснения (ML, machine learning — МО, машинное обучение; DL network, deep learning network — НГО, нейросеть глубокого обучения). Практика показывает, что чаще всего сохраняют оригинальные названия, которые используются в английском языке, например, UML (унифицированный язык моделирования, язык UML), GPT (трансформер, обученный для генерации текста), NLP (обработка естественного языка), LLM (большая языковая модель). Это вполне обоснованно, так как в настоящее время российскими специалистами используются именно английские названия данных явлений. С другой стороны, такой подход позволяет сохранять единство терминологии в области информационных технологий, переводя профессиональный язык на международный уровень путем использования единой системы названий всех технологий.
Проблемой при переводе текстов в сфере искусственного интеллекта является и возможно неверное определение переводчиком степени информационного запаса. Информационным запасом Р. К. Миньяр-Белоручев называет «объем информации, ассоциируемый коммуникантами с некоторым языковым знаком или обозначаемым им объектом действительности» [4, с. 46]. Объем информации у различных читателей может не совпадать. Поэтому необходимо помнить, что получатель — не специалист, и учитывать информационный запас реципиента подобного текста, чтобы информация, предназначенная для передачи, дошла в полном объеме. Следовательно, у переводчика возникают две главные задачи: произвести точный, адекватный перевод с использованием эквивалентной лексики, а также сохранить понятность для читателя без необходимости обращения к дополнительным источникам. При возникновении трудностей есть несколько возможных способов решения: составить глоссарий к тексту, объясняющий некоторые комплексные понятия, дать переводческий комментарий, например, к определённому фрагменту, либо же использовать описательный перевод термина. Иногда происходит так, что термин в данной области транслитерируется, образует устойчивый эквивалент в языке перевода, но всё же требует пояснения для читателя, например: AI content analytics — контент-анализ ИИ, что представляет собой использование технологий искусственного интеллекта для обработки и аналитики неструктурированной информации. Переводческий комментарий Т. А. Казакова предлагает рассматривать как «дополнительный прием, сопровождающий слова, переведенные с помощью любого способа лексико-семантической трансформации, но при этом требующие расширенного пояснения» [2, с. 113]. Обычно комментарий выносится за пределы основного текста и может быть представлен в виде сноски на той же странице или приведен в конце текста как примечание.
При переводе текстов ИИ очень важно понимать тематику данных работ, и это тоже вызывает определённые трудности. Технологии искусственного интеллекта — достаточно сложная и быстро развивающаяся область, поэтому при работе над переводом текста по этой тематике важно постоянно искать и изучать актуальную информацию. От переводчиков требуется высокий уровень компетентности в области информатики, только это гарантирует правильный выбор стратегий перевода, направленных на прагматическую адаптацию текста. Отсутствие навыков перевода терминов в совокупности с незнанием или непониманием сферы, в которой осуществляется перевод и контекста самого перевода может привести к неточному, не однозначному переводу.
Трудным моментом можно также посчитать оформление самого текста перевода на этапе вёрстки и постредактирования файла. IT тексты, как правило, содержат графики, диаграммы и формулы. Также в тексте и иллюстрациях может содержаться текст команд, которые предлагается задавать определенной системе ИИ. Если эти команды прописываются в кавычках, как при написании их на языке программирования, то переводчику не следует переводить этот фрагмент. Программный код и команды на языке программирования имеют свою специфику и точность, которые лучше сохранять в оригинале. Верным решением будет добавить пояснение или описание, чтобы помочь читателю понять суть этих команд, но сам код остается на языке оригинала. Это обычная практика в научно-популярных текстах, чтобы сохранить точность и предотвращение возможных ошибок при последующем обращении к программному коду. Помимо этого, также необходимо учитывать требования к шрифту, режиму оформления и прочим стандартам, если мы работаем с ограниченным форматом файла оригинала, как например руководство, пособие или книга, где сразу же после графика или иллюстрации продолжается основной текст.
Таким образом, можно выделить основные трудности при выполнении перевода научно-популярного материала в области искусственного интеллекта: комплексная специализированная лексика и терминология, постоянно расширяющаяся база профессиональных знаний в данной сфере, которую нужно отслеживать, верное определение степени информационного запаса у реципиентов, а также оформление и постредактирование готового текста на языке перевода.
Литература:
- Ахманова О. С. Словарь лингвистических терминов. Изд. 2-е, стереотипное. — М.: Едиториал УРСС, 2004.
- Казакова Т. А. Практические основы перевода. English <=> Russian. –Серия: Изучаем иностранные языки. — СПб.: «Издательство Союз», 2001.
- Комиссаров В. Н. Теория перевода (лингвистические аспекты): Учеб. для ин-тов и фак. иностр. яз. — М.: Высш. шк., 1990.
- Миньяр-Белоручев Р. К. Теория и методы перевода. — М.: Московский Лицей, 1996.