В данной работе представлены результаты оценки прочности центрального подвешивания тележки пассажирского вагона. Прочность центрального подвешивания тележки оценивалась при трех расчетных режимах. Расчет производился методом конечных элементов с использованием инженерного программного продукта. Для расчета была создана конечно-элементная модель центрального подвешивания пассажирской тележки. В результате проведенного расчета на прочность центрального подвешивания пассажирской тележки установлено, что прочность при всех расчетных режимах удовлетворяет требованиям норм.
Ключевые слова: прочность, оценка, тележка, вагон, центральное подвешивание, расчет, режим, метод конечных элементов, нагрузка, соударение, деформацияцентральное подвешивание, пружина.
Вагонная тележка — основной элемент ходовой части вагона, представляет собой поворотное устройство, на которое опирается кузов вагона [1]. Рессорное подвешивание является одним из основных узлов вагонной тележки, который предназначен для смягчения ударов и уменьшения амплитуды колебаний, передающихся от колёсных пар через буксы на раму.
Для оценки прочности центрального подвешивания тележки модели 68–908 пассажирского вагона [2–9], был произведен расчет в соответствии с требованиями [10]. Прочность центрального подвешивания тележки оценивается при трех расчетных режимах. Исходные данные для расчета центрального подвешивания тележки приведены в таблице 1.
Таблица 1
Исходные данные для расчета центрального подвешивания тележки пассажирского вагона
Наименование параметра |
Величина |
Масса тележки, т |
7,45 |
Расстояние от ЦТ загруженного кузова до оси автосцепок, м |
1,1 |
Масса вагона брутто (максимальная), т |
72 |
Масса загруженного кузова вагона (максимальная), т |
57,5 |
База вагона, м |
17 |
Конструкционная скорость, км/ч |
160 |
Материал и допускаемые напряжения центрального подвешивания тележки пассажирского вагона, принимались в соответствии с [10].
Расчет производился методом конечных элементов с использованием современных программных продуктов — SolidWorks [11–13]. Для расчета была создана конечно-элементная модель центрального подвешивания пассажирской тележки. Элементы центрального подвешивания имитировались объемными параболическими конечными элементами типа тетраэдр с тремя степенями свободы в каждом узле (три перемещения).
В модели имитировались нижние опорные поверхности рессорных комплектов центрального подвешивания. Модель фиксировалась от перемещений по нижним плоскостям рамок. Общий вид и вид конечно-элементной модели центрального подвешивания пассажирской тележки показаны на рис. 1. Вид приложения кинематических и силовых граничных условий, приложенных к модели центрального подвешивания тележки при трех расчетных режимах, представлен на рис. 2.
Рис. 1. Общий вид расчетной модели ( а ) и конечно-элементной модели ( б ) центрального подвешивания пассажирской тележки
Рис. 2. Общий вид приложения кинематических и силовых граничных условий к модели центрального подвешивания пассажирской тележки при первом ( а ), втором ( а ) и третьем ( б ) расчетных режимах
При расчете по первому расчетному режиму принималось следующее сочетание нагрузок, действующих на центральное подвешивание тележки пассажирского вагона:
– сила тяжести брутто, складывающаяся из собственного веса кузова, веса установленного на кузове оборудования и веса пассажиров с багажом;
– вес надрессорной балки и пружин центрального подвешивания, а также дополнительная вертикальная сила, определяемая по формуле (1);
– продольное ускорение, определяемое по формуле (2).
Дополнительная вертикальная сила определялась по формуле:
, (1)
где N — продольная расчетная сила, принимаемая согласно [10] для первого расчетного режима 2,5 МН, для второго — 1,5 МН, для третьего — 1 МН;
h k — расстояние от центра тяжести загруженного кузова до оси автосцепки;
2l — база вагона; Q k — масса загруженного вагона; Q бр — масса вагона брутто.
Продольное ускорение определялось по формуле:
, (2)
где m бр — масса вагона брутто.
При расчете по второму расчетному режиму принимается следующее сочетание нагрузок, действующих на центральное подвешивание тележки пассажирского вагона:
– сила тяжести от тары вагона, а также дополнительная вертикальная сила, определяемая по формуле (1);
– продольное ускорение, определяемое по формуле (2).
При расчете по третьему расчетному режиму принимается следующее сочетание нагрузок, действующих на центральное подвешивание тележки пассажирского вагона:
– сила тяжести брутто, складывающаяся из собственного веса кузова, веса установленного на кузове оборудования и веса пассажиров с багажом; веса надрессорной балки и пружин центрального подвешивания, а также дополнительной вертикальной силы, определяемой по формуле (1);
– вертикальная динамическая нагрузка;
– продольное ускорение, определяемое по формуле (2);
– боковая сила, возникающая при движении вагона в кривых участках пути, принимаемая согласно [10] 10 % от силы тяжести брутто.
Коэффициент вертикальной динамики К дв в соответствии с [10] определялся по формуле:
, (3)
где — среднее вероятное значение коэффициента вертикальной динамики; — параметр распределения, согласно [10] принимается равным β = 1; — доверительная вероятность.
В результате расчета были получены эквивалентные напряжения, возникающие в элементах центрального подвешивания пассажирской тележки при первом, втором и третьем расчетных режимах. Значения величин, полученных по расчетным формулам, приведены в таблице 2.
Таблица 2
Значения величин, полученных по расчетным формулам
Величина |
I режим |
II режим |
III режим |
Вертикальная сила, Н |
102806,1 |
98127,6 |
111844,2 |
Боковая сила, Н |
– |
– |
28204 |
Ускорение, приложенное к центральному подвешиванию тележки, м/с 2 по оси Y по оси Z по оси X |
9,81 34,72 |
11,97 22,39 |
13,05 0,981 13,89 |
Оценка прочности в соответствии с [10] производилась по эквивалентным напряжениям, вычисляемым по теории Мизеса. Эквивалентные напряжения, по теории Мизеса, возникающие в центральном подвешивании пассажирской тележки при первом, втором и третьем расчетным режимам, приведены в таблице 3.
Таблица 3
Максимальные эквивалентные напряжения, возникающие в элементах центрального подвешивания
Наименование элемента |
Максимальные напряжения, МПа |
Допускаемые напряжения, МПа |
I расчетный режим |
||
Нижняя часть серьги |
220 |
225 |
Опорный лист поддона |
195 |
276 |
II расчетный режим |
||
Нижняя часть серьги |
208 |
225 |
Опорный лист поддона |
127 |
276 |
III расчетный режим |
||
Нижняя часть серьги |
150 |
155 |
Опорный лист поддона |
145 |
180 |
Поля распределения эквивалентных напряжений в элементах центрального подвешивания пассажирской тележки при первом, втором и третьем расчетных режимах приведены на рис. 3–4.
Рис. 3. Поля распределения эквивалентных напряжений в элементах центрального подвешивания (серьга) пассажирской тележки при первом ( а ) и втором ( б ) расчетных режимах, Па
Рис. 4. Поля распределения эквивалентных напряжений в элементах центрального подвешивания пассажирской тележки при первом ( а ), втором ( б ) и третьем ( в ) расчетных режимах, Па
В результате проведенного расчета на прочность центрального подвешивания пассажирской тележки установлено, что прочность при всех расчетных режимах удовлетворяет требованиям норм [10]. При этом получены следующие результаты: при первом расчетном режиме максимальные эквивалентные напряжения составляют: 220 МПа (97,78 % от допускаемых); при втором расчетном режиме максимальные эквивалентные напряжения составляют 208 МПа (92,44 %); при третьем расчетном режиме максимальные эквивалентные напряжения составляют 172 МПа (95,56 %).
Литература:
- Рахимов Р. В. Ходовые части вагонов. Учебное пособие. — Ташкент: Узбекистан, 2018. — 200 с.
- Рахимов Р. В. Новые тележки для пассажирских вагонов производства Ташкентского завода по строительству и ремонту пассажирских вагонов / Р. В. Рахимов, С. В. Хохлов // Известия ПГУПС. — 2010. — № 3. — С. 157–165.
- Рахимов Р. В. Совершенствование конструкции пассажирской тележки с люлечным подвешиванием модели 68–909 и 68–908 / Р. В. Рахимов, С. В. Хохлов // Материалы VI Международной научно-технической конференции «Подвижной состав XXI века: идеи, требования, проекты». — СПб.: ПГУПС, 2009. — С. 204–205.
- Миноваров Р. М. Пассажирские вагоны постройки Республики Узбекистан / Р. М. Миноваров, Р. В. Рахимов // Вестник ТашИИТ. — Ташкент, 2009. — № 3–4. — C. 40–45.
- Бороненко Ю. П. Оценка потребности в новых пассажирских вагонах для железных дорог Узбекистана и основные направления их совершенствования / Ю. П. Бороненко, Р. В. Рахимов // Вестник ТашИИТ. — Ташкент, 2009. — № 2. — С. 88–91.
- Рахимов Р. В. Разработка нового пассажирского вагона для железных дорог Узбекистана / Р. В. Рахимов // Материалы VI Международной научно-технической конференции «Подвижной состав XXI века: идеи, требования, проекты». — СПб.: ПГУПС, 2009. — С. 150–153.
- Рахимов Р. В. Первый узбекский пассажирский вагон дальнего следования / Р. В. Рахимов // Тяжелое машиностроение. — 2010. — № 6. — С. 34–35.
- Рахимов Р. В. Новый пассажирский вагон купейного типа для железных дорог Узбекистана / Р. В. Рахимов // Известия ПГУПС. — 2010. — № 2. — С. 286–295.
- Рахимов Р. В. Оценка ходовых качеств нового пассажирского вагона модели 61–920 производства Республики Узбекистан / Р. В. Рахимов // Проблемы механики. — 2015. — № 2. — С. 53–56.
- Нормы для расчета и проектирования новых и модернизированных вагонов железных дорог МПС колеи 1520 мм (несамоходных). — Введ. 01.10.1984. — М.: ВНИИВ-ВНИИЖТ, 1983. — 260 с.
- Рахимов Р. В. “Ўзбекистон темир йўллари” АЖ корхоналарида янги вагонларни қуришда рақамли прототип технологиясини тадбиқ этиш / Р. В. Рахимов, Д. Н. Заирова, Ф. С. Галимова // Вестник ТашИИТ. — 2015. — № 3/4. — С. 54–60.
- Ергашев З. З. Внедрение цифрового прототипа на вагоностроительные предприятия Узбекистана / З. З. Ергашев, Р. В. Рахимов, Ф. С. Галимова // Вестник ТашИИТ. — 2014. — № 2/3. — С. 43–46.
- Raximov R. V. Introduction of modern technologies in the enterprise SJSRC “O’zbekiston temir yo’llari” / R. V. Raximov, F. S. Galimova // Bulletin of Tashkent State Technical University. — 2015. — No 3. — P. 159–164.