Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Инфракрасная рефлектография как средство анализа и атрибуции предметов искусства

Спецвыпуск
24.11.2022
316
Поделиться
Аннотация
В статье рассматриваются методы неинвазивного получения данных об объектах искусства или иных графических объектах с помощью различных спектров невидимого излучения.
Библиографическое описание
Коваленко, Р. А. Инфракрасная рефлектография как средство анализа и атрибуции предметов искусства / Р. А. Коваленко. — Текст : непосредственный // Молодой ученый. — 2022. — № 47.1 (442.1). — С. 8-10. — URL: https://moluch.ru/archive/442/96672.


В статье рассматриваются методы неинвазивного получения данных об объектах искусства или иных графических объектах с помощью различных спектров невидимого излучения.

Ключевые слова : фотография, инфракрасная рефлектография, неинвазивные методы, фильтры, программные методики анализа, УФ-фотография. DLSR, оптические схемы.

The article discusses methods for non-invasive acquisition of data on objects of art or other graphic objects using various spectra of invisible radiation.

Keywords: photography, infrared reflectography, non-invasive methods, filters, software analysis techniques, UV photography. DLSR, optical schemes.

Начиная рассмотрение способов фиксации информации об объектах окружающего мира с помощью инфракрасной фотографии, стоит остановиться на нескольких моментах. В нашем мире существуют различные живые существа, имеющие различные способы получении информации об окружающем мире, да и мы сами можем улавливать различные по своей природе и физическому представлению сигналы окружающей среды или ее параметры.

Холод или теплота окружающей среды, или объектов, запахи, информация о цветовых параметрах и иная графическая информация, звуки, вибрация, атмосферное давление или давление на глубине — все эти параметры мы получаем от среды или объектов на основании своих биологических систем.

Иные живые организмы могут иметь другие биологические системы и получать информацию в других спектрах или диапазонах. Одним из источников получения информации о мире является зрительный аппарат, который имеет различную реализацию у разных организмов.

Если взять кейс анализа графических изображений, то для данных операций мы используем различные алгоритмические процедуры, которые сводятся к преобразованиям исходного изобретения. Данные операции в пользовательском варианте широко представлены в графических редакторах в виде набора фильтров или режимов, в которые можно трансформировать исходную последовательность пикселов. Но так как исходное избрание мы обычно получаем в спектре видимого света, то и преобразования будут исходить из точки стандартного изображения, и c тем набором его свойств, которые получены при стандартной комплектации системы линз.

Если мы применяем инфракрасный фильтр, и тем самым модифицируем оптическую систему, а также изменяем выдержку, и иные параметры оптической системы, то в наших руках получаются изображения с иным спектром параметров, и на матрицу попадёт отличная по свойствам информация. Следовательно, и дальнейшие модификации могут идти по другому пути. При комбинировании подходов получается более целостная картина для исходного (физического) объекта.

Помимо инфракрасной фотографии, может активно использоваться УФ-фотография [1]. Инфракрасная фотография способна видеть и регистрировать инфракрасный свет, невидимый человеческому глазу. Это делается либо с помощью специально изготовленной пленки для аналоговых (пленочных) камер, внешних ИК-фильтров для цифровых зеркальных камер (DLSR), с помощью удаления внутреннего ИК-фильтра (перед матрицей) на зеркальных камерах в комбинации с внешним фильтром на объективе.

Инфракрасная фотография — это своего рода взгляд в «невидимый» мир, дарующий отличную картину от нашего стандартного видения реальности. Человеческий глаз может видеть длины волн примерно от 400 до 700 нм (от фиолетового до красного); инфракрасный свет — это свет за пределами 700 нм. ИК-фотография может быть сделана либо с помощью инфракрасной пленки, либо с помощью цифровой камеры, и обычно включает ближний инфракрасный свет в диапазоне 700–1200 нм. Это отличается от теплового инфракрасного излучения, которое дает изображение далеко в инфракрасном спектре.

Инфракрасная фотография производит очень четкие эффекты, которые делают ее эстетически приятной. Самым поразительным отличием является «эффект дерева», когда листья отражают свет, придавая им ярко-белый вид. Этот эффект назван в честь фотографа Роберта В. Вуда, которого считают отцом инфракрасной фотографии. Этот эффект используется для пейзажной фотографии, где его можно использовать для создания сюрреалистичных цветных пейзажей, или высококонтрастных черно-белых фотографий.

Инфракрасная фотография очень привлекательна для художественной фотографии. Это выглядит сюрреалистично и потусторонне: деревья приобретают ярко-белый или желтый оттенок, а небо — красный или синий оттенок. Листья кажутся замороженными, а небо приобретает драматические и зловещие цвета, как на черно-белых, так и на цветных фотографиях.

Помимо обращения к художественной фотографии, инфракрасная фотография и фотография полного спектра используются в других областях. Многие материалы и красители выглядят по-разному в видимом и инфракрасном свете. В результате его можно использовать для обнаружения камуфляжа, фальшивых денег и обнаружения пролитых документов, для восстановления документов, появляются скрытые контуры или направляющие.

Полноспектральная фотография популярна в физике для фотографирования звезд, поскольку некоторые звезды видны только в ИК- или УФ-спектре. Существует также множество других приложений для полноспектральной фотосъемки, включая анализ сельскохозяйственных или экологических растений, медицинские приложения, судебную экспертизу, повышенную светочувствительность для съемки при слабом освещении, различные виды экспертиз и исследований.

Ультрафиолетовая фотография — это специфический способ создания уникальных изображений при фотосъемке в ближнем ультрафиолетовом диапазоне, ниже 380 нм. Данная часть электромагнитного спектра невидима для человеческого глаза. Датчики камеры могут быть чувствительны к этому после их модификации. То же самое и с инфракрасной фотографией.

На сегодняшний день учеными установлено, что видеть ультрафиолетовые лучи способны:

— насекомые и прочие беспозвоночные;

— многие виды птиц;

— различные обитатели подводного мира, включая рыб, моллюсков и ракообразных;

— рептилии.

Их системы восприятия анализируют окружающий мир в представлении отличном от других представителей фауны, что позволяет им занимать определённые ниши для жизни.

Ультрафиолет воздействует на окружающую среду совершенно иначе, чем инфракрасный. Мы можем использовать УФ-фотографию для художественной фотографии (макросъемка, портрет, пейзаж), а также для аналитической фотографии (дерматологический и судебный анализ), анализ минеральной и химической составляющей.

При исследовании, в частности, исторических бумаг и рукописно-книжных памятников практический интерес представляет обнаружение и идентификация веществ, входящих в состав бумажной основы и красителей, что позволяет уточнять датировку и место происхождения объекта. Для этих целей в настоящее время используются методы ИК-спектрофотометрии [2].

В целом, рассматривая использование свойств фотосьёмки с применением модифицированных оптических схем в разных спектрах для составления комплекса изображений с различными свойствами, для выявления определенных параметров, которые могут быть использованы для цифрового анализа в рамках информационных систем. Здесь мы фактически получаем больший набор знаний об одном объекте для его верификации (атрибуции в случае предметов искусства).

Информационную систему, имеющую в своем распоряжении различные по своей композиции снимки идентичного объекта, можно считать неким набором для обучения в рамках текущей задачи, где реперные точки и масштаб объекта идентичен для всего набора элементов исследования, а пиксельная сетка имеет различия, основанные на физических свойствах материалов на образце. Различия физических свойств, влияющих на отражающую способность, позволяют категорировать участки пиксельной карты и сопоставить их с химическими образцами, имеющими соответствующую отражающую характеристику.

Подводя итог рассмотрению фотосъемки в инфракрасных и ультрафиолетовых спектрах, стоит отметить необходимость комплексного применения неинвазивных средств анализа в рамках исследования предметов искусства, системных технологий получения данных на основе инфракрасной рефлектографии, используемых в дальнейшем аналитическими информационными системами для принятия решений.

Литература:

  1. Невидимая фотография. — Текст: электронный // Хабр: [сайт].– URL: https://habr.com/ru/post/471032/ (дата обращения: 02.11.2022).
  2. Корнышев, Н. П. Особенности формирования сигнала изображения при инфракрасной рефлектографии в среднем и дальнем диапазонах спектра / Н. П. Корнышев, М. А. Калитов, А. С. Сенин // Фотография. Изображение. Документ. — 2018. — № 8(8). — С. 35–38. — EDN WOIBJU.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Похожие статьи
Полноцветная ультрафиолетовая печать: особенности и преимущества
Характеристика методов криминалистической запечатлевающей фотографии
Совершенствование диагностики товарных нефтепродуктов спектральными методами в целях пожарно-технической экспертизы
Современные возможности применения судебной фотографии при производстве осмотра мест происшествий
Изучение инфракрасного метода сушки зерна и зернистых материалов
Современные средства фиксации информации, применяемые специалистом при осмотре места происшествия
Современные методы обнаружения следов рук
Спектральный анализ световых отражений от космических объектов
Drosophila Melanogaster как возможный маркер состояния биогеоценоза при действии на него ультрафиолетового и инфракрасного излучений
Важность изучения памятников истории, природы и культуры на основе фотограмметрии

Молодой учёный