На производственных предприятиях по типу машиностроительных заводов часто необходимо назначение той или иной термической или химико-термической обработки для получения необходимых эксплуатационных характеристик детали. В данной работе представлена разработка технологического процесса термической обработки для детали “Вал-шестерня редуктора привода лебедки” изготовленной из стали 18ХГТ с получением необходимых механических свойств: твердость зубьев не менее 55 HRC, на глубину h = 0,8 -1,2 мм; твердость сердцевины не менее 270 HB; предел прочности (σ в ) не менее 800 МПа; ударная вязкость (KCU) не менее 60 Дж/см 2 .
Ключевые слова: термическая обработка, цементация, отпуск, вал-шестерня.
Для того, чтобы деталь имела длительный срок службы, необходимо правильно назначить режимы термической и/или химико-термической обработки, с целью получения необходимых эксплуатационных свойств. К примеру, деталь “Вал-шестерня редуктора привода лебедки” должна обладать твердостью зубьев не менее 55 HRC, на глубину h = 0,8 -1,2 мм; твердостью сердцевины не менее 270 HB; пределом прочности (σ в ) не менее 800 МПа и ударной вязкостью (KCU) не менее 60 Дж/см 2 . Чтобы назначить режимы термической и/или химико-термической обработки верно, необходимо знать некоторую терминологию материаловедения. Заготовка детали “Вал-шестерня” после механической обработки поступает в термический цех, где происходит термическая обработка. Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения твердых металлический сплавов, с целью получения необходимых свойств в ходе изменения внутренней структуры и строения [1]. Цементацией или науглероживанием называется операция химико-термической обработки, которая заключается в диффузионном насыщении поверхностного слоя детали углеродом при нагреве (900–950 ℃) в углеродосодержащей среде (так называемом — карбюризаторе) [2]. Отпуском называется операция термической обработки, которая заключается в нагреве закаленной стали до температур ниже линии А 1 , для получения равновесной структуры и заданных механических свойств [1].
После завершения операций термической и химико-термической обработки необходимо провести контроль твердости сердцевины и зубьев, ударной вязкости и предела прочности.
Так как для детали используется массовое производство, для получения заданного комплекса механических свойств, решено провести газовую цементацию. Существует два вида газовой цементации: одноступенчатый и двухступенчатый процессы. Двухступенчатый процесс в отличие от одноступенчатого значительно сокращает время цементации, увеличивая толщину насыщения поверхности заготовки углеродом в 1,65–1,8 раза, а также обеспечивает лучшее распределение углерода по всей толщине слоя [2]. Следовательно, рациональнее использовать газовую двухступенчатую цементацию. Чтобы при цементации не происходил рост зерна в структуре стали, температура должна быть не более 950–960 ℃ [2]. В качестве атмосферы в печи принято использовать эндотермическую атмосферу, так как она позволяет автоматически регулировать степень насыщения поверхностного слоя углеродом. Время нагрева и выдержки заготовок в печи рассчитано по соответствующим формулам. Режимы химико-термической обработки детали “Вал-шестерня” из стали 18ХГТ представлены в таблице 1.
Таблица 1
Режимы цементации детали «Вал-шестерня редуктора привода лебедки”, изготовленной из стали 18ХГТ
Операция термической обработки |
Т, ℃ |
Время нагрева, мин |
Время выдержки, мин |
Время подстуживания, мин |
Охлаждаю-щая среда |
Двухступенчатая газовая цементация (эндотермическая атмосфера) |
950 |
100 |
180 |
150 (до t = 825℃) |
Масло (И-50А) |
После непосредственной закалки с подстуживанием проводится низкий отпуск [2].
Время нагрева и выдержки при отпуске рассчитывается исходя из максимального диаметра детали и ее конфигурации по соответствующим формулам. Режимы термической обработки детали “Вал-шестерня” из стали 18ХГТ представлены в таблице 2.
Таблица 2
Режимы низкого отпуска детали «Вал-шестерня редуктора привода лебедки», изготовленной из стали 18ХГТ
Операция термической обработки |
Т, ℃ |
Время нагрева, мин |
Время выдержки, мин |
Охлаждающая среда |
Низкий отпуск |
180 |
60 |
200 |
Вода |
В ходе полученных результатов эксперимента сформирован технологический процесс термической обработки детали “Вал-шестерня” из стали 18ХГТ, который представлен в таблице 3.
Таблица 3
Технологический процесс термической и химико-термической обработки детали «Вал-шестерня редуктора привода лебедки», изготовленной из стали 18ХГТ
Операция термической обработки |
Т, ℃ |
Время нагрева, мин |
Время выдержки, мин |
Время подстуживания, мин |
Охлаждающая среда |
Двухступенчатая газовая цементация (эндотермическая атмосфера) |
950 |
100 |
180 |
150 (до t = 825℃) |
Масло (И-50А) |
Низкий отпуск |
180 |
60 |
200 |
- |
Вода |
После проведения всех операций термической обработки, необходимо провести контроль качества термической обработки. Твердость зубьев равна 56 HRC на глубину 1 мм; твердость сердцевины равна 275 HB; предел прочности (σ в ) равен 805 МПа; ударная вязкость (KCU) равна 61 Дж/см 2 .
В результате проведения эксперимента было выявлено, что назначенные режимы термической и химико-термической обработки детали “Вал-шестерня редуктора привода лебедки”, изготовленной из стали 18ХГТ, полностью удовлетворяют техническим требованиям. Технологический процесс термической обработки верен и может применяться для данной детали. Все полученные механические свойства детали входят в интервал заданных. Твердость зубьев равна 56 HRC на глубину 1 мм (задано: не менее 55 HRC на глубину 0,8–1,2 мм); твердость сердцевины равна 275 HB (задано: не менее 270 МПа); предел прочности (σ в ) равен 805 МПа (задано: не менее 800 МПа); ударная вязкость (KCU) равна 61 Дж/см 2 (задано: не менее 60 Дж/см 2 ).
Литература:
- Самохоцкий, А. И. Технология термической обработки металлов / А. И. Самоходский, Н. Г. Парфеновская. — 2-е изд. — Москва: “Машиностроение”, 1976. — 311 с. — Текст непосредственный.
- Лахтин, Ю. М. Химико-термическая обработка металлов / Ю. М. Лахтин. — Москва: Металлургия, 1985. — 256 с. — Текст непосредственный.