Автор: Скрипчук Галина Алексеевна

Рубрика: Физика

Опубликовано в Молодой учёный №3 (3) март 2009 г.

Статья просмотрена: 537 раз

Библиографическое описание:

Скрипчук Г. А. Взаимодействие металлов с водородом // Молодой ученый. — 2009. — №3. — С. 26-29.

Изучению взаимодействия водорода с металлами посвящено большое количество исследований как материаловедческого, так и фундаментального плана. Это вызвано тем, что водород, проникающий в металл во время плавки, разливки и различных химических, электрохимических, газоразрядных и ядерных процессов, является одной из важнейших причин ухудшения эксплуатационных характеристик материала. Снижение пластических свойств материалов (водородная хрупкость), раковины, пузыри, трещины и другие макроско­пические несовершенства структуры способствуют быстрому разрушению изделий, контактирующих с водородом.

Основными проблемами конструкционных и функциональных материалов является механизм проникновения водорода в металл и изменение свойств под действием водорода.

Причиной низкотемпературного наводороживания  является катодная поляризация поверхности стального оборудования в электролитических средах. Такая поляризация на практике может иметь место в результате двух принципиально отличающихся процессов: 1) саморастворения (коррозии, химического травления); 2) электрохимической обработки с наложением тока [1].

Наводороживание слагается из этапов адсорбции, абсорбции (растворение) и диффузии водорода. Следовательно, чтобы узнать характер неоднородности,  появившейся в результате наводороживания нужно знать закон распределения водорода по объему конструктивного элемента и связь концентрации водорода со степенью изменения механических свойств.

Следуя Б.А.Колачеву, процесс диффузии водорода в металл можно описать следующим образом [2].  При адсорбции молекулы водорода в конечном итоге распадаются на атомы, которые затем диффундируют вглубь металла. Плотность потока J, то есть количество вещества, диффундирующего в единицу времени через единицу поверхности, перпендикулярной потоку вещества, пропорциональна пространственному коэффициенту концентрации

 

где D – коэффициент диффузии, C -  концентрация водорода.

Для одномерной задачи уравнение переходит в первый закон Фика

Если коэффициент D не зависит от концентрации, то из первого вытекает второй закон Фика в виде

 

В интегральной форме коэффициент диффузии:

 

где - толщина стенки,  t- время,  - концентрации диффундирующего тела в поверхностных слоях.

Кроме того, коэффициент диффузии для тонких мембран зависит от толщины сечения, это связано с тем, что при тонких сечениях не выполняется первый закон Фика, так как не достигается независимость концентрации от плотности поляризующего тока.

Для нахождения закона распределения концентрации водорода  и по объему конструктивного элемента в любой момент времени нужно решить уравнение диффузии с начальными и граничными условиями, соответствующими рассматриваемой задачи.

Большой интерес представляют работы Катлинского B.M. [2]. Он  провел большую рабо­ту по анализу и статистической обработке опубликованных экспериментальных данных для коэффициента диффузии водорода в различных металлах. Причем автор при анализе исключал из рассмотрения резко отклоняющиеся данные и использовал метод наименьших квадратов для нахождения значений D   и   E   в зависимости:

где D0 – предэкспоненциальный множитель, E – энергия активации при диффузии, R – газовая постоянная, T -  абсолютная температура.

В таблице 1 приведены эффективные значения D и E.

Таблица 1. Параметры температурной зависимости коэффициента диффузии водорода D.

 

Материал

Т, К

D, 10-3 см2

Е, кДж/моль

Ni

400-1600

7.850.87

40,81,3

 - Fe

298-1837

1.03 0.12

11,32,09

- Fe

324-1812

3.741.34

34,06,68

- Pd

273-923

6.00.41

24,50,6

Cu

555-1366

6.451.04

35,62,92

- Ti

500-1173

10.05.0

51,53,22

 - Ti

500-1373

5.080.96

36,62,03

- Z

548-973

3.713.5

39,45,0

 - Nb

175-830

0.590.05

10,80,32

 - Nb

443-1623

13.83.8

37,71,84

- Ta

273-600

0.550.02

14,20,12

Mo

523-2023

35.18.9

58,62,84

W

973-2400

1.2640.0

84,54,55

 

С уменьшением температуры испытаний определение коэффициента диффузии затрудняется,  ибо лимитирующей стадией процесса проникания становится поверхностное взаимодействие, определяющее поступление водорода в металле. Поэтому опреде­ление коэффициента диффузии должно проводиться в условиях, максимально приближенных к эксплуатационным.

При низких температурах зависимость коэффициента диффузии от температуры схематически изображена на рис. 1.

Проникновение водорода в сталь увеличивается с повышением содержания в ней до 0,9% углерода. Дальнейшее увеличение количества углерода сопровождается замедлением наводороживания. Отмечается незначительное влияние на наводороживание добавок никеля, хрома, молибдена, кремния и марганца.

Появившийся в результате низкотемпературного наводороживания в металле водород распределяется в нем неравномерно. У корродирующей поверхности неизменно наблюдается повышенная концентрация водорода. Выравнивание содержания водорода достигается при вылеживании (старении) металла и протекает за счет диффузии во внутренней области и десорбции водорода наружу. Участие молекулярного водорода в процессе десорбции из металла после прекращения наводороживания практически несущественно.

Значительно более опасна по своим последствиям форма водородного разрушения, проявляющегося, в растрескивании стали, вследствие возникающего в результате наводороживания серьезного ухудшения механических свойств металла. Сюда относится и разрушение вследствие водородной усталости (под действием циклической нагрузки). Для водородного растрескивания достаточно сравнительно небольших содержаний водорода в стали.

 

Рис. 1. Зависимость коэффициента диффузии от температуры.

 

 
 

Высокий по концентрации раствор водорода образуется в кристаллической решетке непосредственно впереди острия развивающейся трещины. Это способствует деформации металла.

Структура стали оказывает существенное влияние на склонность к водородному растрескиванию. Такие добавки, как никель (1%) и марганец увеличивают склонность к водородному растрескиванию. Стойкость к водородному охрупчиванию повышается добавкой кремния [3].

Существует представление о критической величине твердости, ниже которой сталь не подвергается растрескиванию при наводороживание независимо от величины напряжения. Считается, что эта величина снижается в результате предварительной пластической деформации.

Причины повышенной склонности высокопрочных сталей к водородному растрескиванию объясняется на основе анализа двух основных стадий разрушения – зарождение трещин и их рост. Вероятная причина зарождения трещин – заметное снижение истинного значения разрывного напряжения для новодороженных сталей.

Рост образования трещин происходит, только ниже определенной минимальной величины пластичности стали. Наводороживание сопровождается падением пластичности, пропорциональным концентрации водорода в металле. После снижения пластичности до указанного минимального значения начинается рост всех образовавшихся трещин. Соответственно, в более мягких сталях для наступления этого момента требуется большая потеря пластичности.

Учитывая выше изложенное можно сказать, что проблему взаимодействия водорода с металлами нельзя считать решенной. Для ее решения понадобятся многочисленные экспериментальные исследо­вания и хорошо описывающие эти процессы математические модели.

 

Литература

1.                  Качанов, Л.М. Основы механики разрушения. - М.: Наука, 1974.- 312с.

2.                  Колачев, Б.А. Водородная хрупкость метал­лов. – М.: Металлургия, 1985. – 215c.

3.                  Шрейдер, А. В. Влияние водорода на нефтяное - химическое оборудование. - М.: Машиностроение,1976. – 144с.

 

 

Основные термины (генерируются автоматически): диффузии водорода, диффузии водорода, коэффициента диффузии водорода, коэффициента диффузии водорода, концентрации водорода, концентрации водорода, концентрация водорода, взаимодействия водорода, концентрация водорода, взаимодействия водорода, процесс диффузии водорода, процесс диффузии водорода, диффузии водорода d, диффузии водорода d, связь концентрации водорода, связь концентрации водорода, коэффициент диффузии, Изучению взаимодействия водорода, -  концентрация водорода, коэффициент диффузии.

Обсуждение

Социальные комментарии Cackle
Задать вопрос