Автор: Катков Алексей Николаевич

Рубрика: Технические науки

Опубликовано в Молодой учёный №6 (29) июнь 2011 г.

Статья просмотрена: 725 раз

Библиографическое описание:

Катков А. Н. Имитационная модель цифрового датчика давления // Молодой ученый. — 2011. — №6. Т.1. — С. 58-66.

Введение. Потребность в точных измерениях физических величин обусловливает непрерывное совершенствование средств измерений. Важным классом средств измерений являются датчики. Для повышения метрологических и эксплуатационных характеристик датчиков в последние 7-10 лет применяются цифровые методы обработки измерительных сигналов, при этом передача данных выполняется по цифровому каналу связи.

Цифровая обработка сигналов в датчике реализуется встроенной электроникой, содержащей аналого-цифровой преобразователь (АЦП), процессорное ядро, энергонезависимую память, цифровой интерфейс и прочие элементы (стабилизаторы питания, согласующие усилители и т.д.). Фактически, встроенная электроника представляет собой специальную вычислительную машину, которая выполняет две задачи, в общем случае не связанные между собой.

Первая задача – повышение метрологических характеристик датчика – решается алгоритмами цифровой коррекции нелинейности и дополнительных погрешностей. Алгоритмы коррекции опираются на метод вспомогательных измерений [1, 2]. Вторая задача – повышение эксплуатационных характеристик – заключается в обеспечении управления параметрами работы датчика за счет обмена данными по специализированной сети передачи данных. Такие сети часто имеют шинную топологию с одним ведущим устройством, управляющим обменом данными. При этом датчики работают в режиме ведомых устройств.

Обе описанные задачи решаются на этапе проектирования цифровых датчиков. На этом этапе возникает необходимость в инструментальном средстве моделирования работы предполагаемых решений.

Проектирование. При проектировании цифрового датчика необходимо строить структурно-функциональную модель датчика, оптимизировать ее по критериям минимизации погрешностей, энергопотребления и максимизации быстродействия, а также сбалансированно распределять функции между аппаратной частью и встроенным программным обеспечением (ПО), а в аппаратной части – между аналоговой и цифровой составляющими.

Принципиальным отличием, выделяющим цифровые датчики физических величин в перспективный класс непрерывно-дискретных систем – класс измерительно-вычислительных устройств, является сочетание достижений измерительной и вычислительной техники в малогабаритных маломощных высокоточных приборах. Наиболее ответственным и сложным этапом проектирования таких устройств является разработка алгоритма функционирования. Алгоритм реализуется во встроенном ПО, таким образом, требуется определять структуру встроенного ПО. Естественным решением служат конечные автоматы, так как [3] «…автомат (от греческого automatos - самодействующий) – это абстрактный и идеализированный механизм выполнения действий со знаковыми, символьными конструкциями…». Команды, получаемые датчиком, могут рассматриваться как символы языка обмена данными с датчиком [4] и представляют собой множество входных сигналов автомата. Состав этого множества, а также множества выходных сигналов диктуется требованиями к датчику.

Задача построения автомата сводится к определению множества состояний, функции переходов и функции выходов. Для этого целесообразно создать некоторую среду, имитирующую поведение автомата всвоего рода искусственной действительности. Искусственная действительность, она же – модель [5], позволяет решить задачу разработки структуры прибора, схемы связей и графа переходов конечного автомата на ранних этапах проектирования цифровых датчиков.

Имитационная модель цифрового датчика давления. Рассмотрим пример имитационной модели цифрового датчика давления. Датчик содержит чувствительные элементы (ЧЭ) давления и температуры, двунаправленный цифровой канал и аналоговый выход по напряжению, необходимый на время переходного периода к цифровым каналам связи в измерительных системах. Датчик получает команды по цифровому интерфейсу, выполняет их и отправляет ответы. В качестве инструментального средства моделирования хорошо подходит среда MATLAB/Simulink. На рисунке 1 показана модель датчика с окружением.

Рисунок 1 – Имитационная модель цифрового датчика давления

В модели имитируется обмен данными на канальном уровне интерфейса RS-485. Подсистема «Software» (рисунок 2) подает датчику команду и принимает ответ.

Рисунок 2 – Подсистема «Software»

Подача команды имитируется передачей значений байтов команды, определяемых кодом команды (константа ComCode) и номером датчика (константа SensNumber), посредством подсистемы «UART», которая преобразует значение байта в последовательность битов, обрамляет ее старт- и стоп-битами и передает в последовательный канал.

Структура датчика (рисунок 3) содержит измерительный канал, АЦП, устройство цифровой обработки сигналов (ЦОС), цифровой интерфейс и аналоговый интерфейс.

Рисунок3 – Подсистема «Digital_Pressure_Sensor»

Аналоговый интерфейс реализован масштабатором. Измерительный канал (рисунок 4) имитирует тензометрический кремниевый ЧЭ давления, сигнал которого усиливается операционным усилителем (ОУ), ЧЭ температуры на терморезисторе и стабилизатор питания тензомоста и делителя напряжений с терморезистором в нижнем плече. Опорное напряжение, напряжение смещения ОУ и коэффициент усиления внутреннего усилителя, предшествующего АЦП, задается устройством ЦОС.

Рисунок4 – Подсистема «MeasurementChannel»

АЦП моделируется (рисунок5) блоками «IdealizedADCQuantizer» в подсистеме «ADCchannels». Время преобразования составляет 30 мкс, разрядность – 12 бит. Преобразование запускается сигналом «StartConversion» от устройства ЦОС. По завершению преобразования подсистема формирует признак «Завершение АЦ-преобразования».

Рисунок5 – Подсистема «ADC»

Подсистема «DigitalInterface» (рисунок 6) имитирует универсальный асинхронный приемо-передатчик, принимающий либо передающий данные по цифровому каналу. Прием значений байтов из битов, поступающих из канала, и формирование признака «Завершение приема» реализовано регистром сдвига в подсистеме «ReceiveCommand» (рисунок 7).

Рисунок6 – Подсистема «DigitalInterface»

Рисунок 7 – Подсистема «ReceiveCommand»

Формирование битов, передаваемых в канал, и признака «Завершение передачи» реализовано подсистемой «TransmitResponse» (рисунок 8), использующей подсистему «UART».

Рисунок8 – Подсистема «TransmitResponse»

Устройство ЦОС моделируется подсистемой «DSP_Based_on_MCU» (рисунок 9), Подсистема содержит подсистемы цифро-аналоговых преобразователей (ЦАПов), задающих напряжение смещения ОУ и выходное напряжение, усиливаемое аналоговым интерфейсом, представляющее собой аналоговый измерительный сигнал датчика давления. Кроме ЦАПов, подсистема «DSP_Based_on_MCU» содержит в себе подсистему «Software_and_Memory», которая моделирует энергонезависимую память датчика (подсистема «Flash_Memory») и встроенное программное обеспечение (Stateflow-диаграмма «Embedded_Software»). Подсистема «Flash_Memory» построенанаблоках «DataStoreMemory», «DataStoreWrite» и «DataStoreRead». Stateflow-диаграмма «Embedded_Software»является не чем иным, как схемой связей конечного автомата датчика. Таким образом, аппаратная часть цифрового датчика давления моделируется средствами Simulink, программная – средствами Stateflow.

Рисунок9 – Подсистема «DSP_Based_on_MCU»

Граф переходов конечного автомата показан на рисунке 10. Он содержит 5 состояний, основным из которых является рабочее состояние датчика «Sensor_Working» (рисунок 11). По выставлении приемником команд признака RI в 1 выполняется переход в состояние приема команды «Command_Receiving» (рисунок 13). По приему значения, принятого признаком завершения команды (в примере – 33), выполняется переход в состояние анализа принятой команды «Command_Analysis» (рисунок 13). В состоянии анализа проверяется длина принятой команды (допускаются длины 3 байта и 15 байт) и значение логической переменной «Flag». Из состояния анализа имеется три перехода в состояние выполнения команд «Command_Executing» (рисунок 14). В состоянии выполнения команд сравниваются номер датчика с номером, полученным в команде, и при их совпадении выполняется переход в соответствующее состояние исполнения команды (пример – состояние исполнения команды «Beta», рисунок 15).

Рисунок10 – Stateflow-диаграмма графа переходов конечного автомата датчика

Рисунок11 – Stateflow-диаграмма рабочего состояния датчика

В рабочем состоянии датчик определяет режим работы (признак хранится в энергонезависимой памяти, задает один из трех режимов: рабочий, проверка, настройка) и переходит либо в состояние вычисления коэффициентов аппроксимирующих кривых (в режимах рабочем и проверки), либо в состояние измерений (в режиме проверки, рисунок 12). После получения кодов АЦП давления и температуры в режимах рабочем и проверки выполняется переход в состояние коррекции погрешностей и задания выходного напряжения датчика.

Реализация программно-аппаратного взаимодействия в Stateflow-диаграммах заключается в задании управляющих сигналов для внешних периферийных узлов, таких как АЦП, приемо-передатчик, ЦАПы (например, сигналы StartConv, InterfaceControl, TI_clear, RI_clear)и выполнении условных переходов из состояния в состояние по значениям сигналов от внешних периферийных узлов (например, ADCINT, TI, RI).

Рисунок12 – Stateflow-диаграмма состояния измерений

Рисунок13 – Stateflow-диаграммы состояний приема и анализа команд

Рисунок14 – Stateflow-диаграмма состояния выполнения команд

Рисунок15 – Stateflow-диаграмма состояния выполнения команды подстройки начального сигнала

На рисунке 16 приведен пример обмена данными по каналу связисо скоростью 9600 бит/с. Датчик получает команду «Beta» (вектор {35,207,37,48,52,48,48,49,38,80,90,69,82,79,33}, осциллограмма слева вверху), поступающую потоком битов (осциллограмма слева внизу), выполняет ее и отправляет ответ «Phi» (вектор {34,206,37,48,52,48,48,49,38,80,90,69,79,75,33}, осциллограмма справа вверху)потоком битов (осциллограмма справа внизу). По оси времени на рисунке 16 отложено реальное время в секундах.

Рисунок16 – Команда датчику, ответ датчика

Заключение. Рассмотренная модель представляет собой инструментальное средство для проверки вариантов проектных решений на ранних этапах разработки цифровых датчиков. Она позволяет в короткий срок отработать схему связей конечного автомата датчика, определить его множество состояний, функцию переходов и функцию выходов, что трудоемко делать «вручную». Заданные в требованиях к датчику множества входных и выходных сигналов и определенные на модели схема связей, множество состояний и функции переходов и выходов представляют собой решение задачи проектирования встроенного программного обеспечения цифровых датчиков до уровня подпрограмм, таких как вычислительные функции, драйверы периферийных узлов и т.д.

Кроме того, имитационная модель делает возможной апробацию различных вариантов построения структуры датчика, распределения функций между аналоговой и цифровой электроникой, между аппаратной и программной частями, а также апробацию различных параметров отдельных узлов. Фактически, имитационная модель служит средой разработки структурно-функциональной модели и конечного автомата датчика. По структурно-функциональной модели строится функциональная схема датчика, по конечному автомату разрабатывается встроенное программное обеспечение датчика.

Таким образом, рассмотренный подход к имитационному моделированию структур и алгоритмов работы цифровых датчиков заключается в создании искусственной действительности – модели, воспроизводящей условия работы датчиков для решения разнообразных задач проектирования цифровых датчиков физических величин.


Литература:

  1. Земельман М.А. Автоматическая коррекция погрешностей измерительных устройств. – М., Издательство стандартов, 1972. – 199 с.

  2. Туз Ю.М. Структурные методы повышения точности измерительных устройств.– К.: «Вища школа», 1976, – 256 с.

  3. Твердохлебов В.А. Геометрические образы законов функционирования автоматов. – Саратов: ООО Издательство «Научная книга», 2008. – 183 с.

  4. Катков А.Н. Методика автоматизированной настройки цифровых датчиков // Проблемы автоматизации и управления в технических системах: тр. Междунар. науч.-техн. конф. (г. Пенза, 19-22 апреля 2011) : в 2 т. / под ред. д.т.н., профессора М.А. Щербакова. – Пенза: Изд-во ПГУ, 2011. – 1 т. 318 с. с. 275-276.

  5. Акофф Р., Эмери Ф. О целеустремленных системах. – М.: Сов. Радио, 1974, - 272 с.

Основные термины (генерируются автоматически): цифрового датчика, цифрового датчика давления, конечного автомата датчика, цифровых датчиков, модель цифрового датчика, модель датчика, датчика АБС, Имитационная модель, проектирования цифровых датчиков, структурно-функциональную модель датчика, метрологических характеристик датчика, Имитационная модель цифрового, переходов конечного автомата, рабочее состояние датчика, проектировании цифрового датчика, сигнал датчика давления, модели цифрового датчика, параметрами работы датчика, часть цифрового датчика, энергонезависимую память датчика.

Обсуждение

Социальные комментарии Cackle
Задать вопрос