Представлен процесс разработки 3-D модели аппарата воздушного охлаждения. Приведено описание конструкции аппарата и технологического процесса, протекающего в нем. Обозначены основные операции, использованные при проектировании (выдавливание, сборка, сопряжение) аппарата в САПР КОМПАС-3D.
Ключевые слова: аппарат воздушного охлаждения, осевой вентилятор, трехмерная модель, физическая модель, операция, элемент.
В процессе изучения дисциплин политехнического цикла у студентов формируются определенные государственными стандартами компетенции. В [1] сказано: «Особенно же велико значение изображений пространственных фигур в воспитании пространственного воображения у учащихся, в выработке у них более тонкого, более развитого пространственного мышления, столь необходимого в условиях современной сложной техники». Пространственное мышление формируется у студентов в процессе выполнения практических работ по дисциплине «Инженерная графика».
Система подготовки студентов по дисциплине «Инженерная графика» направлена на формирование навыков [2]:
– целостного мышления, системного анализа и синтеза технических структур, основанных на использовании 3-D моделей;
– восприятия, представления и переработки технической информации, заданной в форме различных 3-D моделей;
– выполнения задач пространственно-структурной комбинаторики в воображении или с помощью вспомогательных 3-D моделей;
– поисковой деятельности с использованием различных 3-D моделей;
– инверсионного мышления в задачах 3-D формообразования.
Проиллюстрируем формирование перечисленных навыков, приобретаемых студентами при разработке 3-D модели системе автоматизированного проектирования (САПР) КОМПАС на примере аппарата воздушного охлаждения (АВО). Данный аппарат выбран в качестве примера, как наиболее часто применяемый на объектах газовой промышленности.
На первом этапе студенты знакомятся с характеристиками АВО. Аппараты различных конструкций применяются в целях охлаждения газа и масла, охлаждения и конденсации рефлюксной жидкости. Основными элементами АВО (рис. 1) являются: теплообменные секции, осевой вентилятор с электроприводом, аэродинамические элементы и несущие конструкции [3].
Рис. 1. Аппарат воздушного охлаждения
Теплообменные секции представляют собой пучки оребренных труб, расположенных, как правило, в шахматном порядке по ходу движения охлаждающего агента (воздуха). Шахматный порядок расположения труб обеспечивает более высокую теплоотдачу. Оребрение труб применяется с целью увеличения поверхности теплообмена. Площадь наружной поверхности таких труб в 10…25 раз больше площади их внутренней поверхности [4].
Осевой вентилятор с электроприводом, вращаясь в полости коллектора, прокачивает воздух через теплообменные секции АВО. Вентилятор устанавливается на оси электродвигателя без редуцирующего устройства. Осевые вентиляторы имеют от 4 до 8 лопастей и диаметр — 0,8…5,0 м. Это позволяет обеспечивать значительные расходы воздуха в АВО при статических напорах от 100 до 400 Па.
Цилиндрический коллектор, формирующий движение воздушного потока, закрывает лопасти вентилятора. Соединение коллектора с теплообменными секциями осуществляется через диффузор. Диффузор применяется для выравнивания потока воздуха по сечению теплообменной секции.
Работа АВО характеризуется переменной нагрузкой. Она зависит от технологического режима, температуры и влажности воздуха.
Второй этап разработки заключается в работе с САПР КОМПАС-3D. Здесь первоначально формируются 3-D модели отдельных элементов АВО.
- Диффузор и коллектор (рис. 2). Эти элементы АВО формируются с помощью операции выдавливания. Результатом данной операции является перемещение эскиза перпендикулярно его плоскости.
Отметим, что для выполнения операции выдавливания необходим эскиз. На основе эскиза и заданного расстояния выдавливания осуществляется данная операция [5].
Для выполнения операции выдавливания к эскизу предъявляются следующие требования [5]:
– объекты, участвующие в операции, выполняются основной линией, а вспомогательные линии выполняются любым другим стилем;
– при наложении одного контура на другой формируется тонкостенная оболочка;
– при пересечении одним контуром другого операция выполняется по объединенной области, ограниченной контурами.
Рис. 2. Трехмерная модель диффузора и коллектора
Диффузор получается в результате выдавливания окружности с заданным углом.
Коллектор формируется из эскиза прямоугольника заданием только высоты выдавливания.
- Крышка, изображающая верхнюю часть теплообменных секций АВО (рис. 3). Данный элемент также формируется с помощью операции выдавливания.
Рис. 3. Крышка АВО
- Сборка АВО. По окончании формирования элементов АВО производится операция сборки (рис. 4).
Добавление элемента в сборку осуществляется нажатием кнопки «Добавить компонент из файла» во вкладке «Компоненты» [6], выбираем элемент и нажимаем «Открыть». Затем необходимо выбрать местоположение для выбранного элемента. После этого операция повторяется.
Рис. 4. Сборка АВО
После того, как в сборке собраны все элементы АВО, осуществляется создание параметрических связей между ними. Параметрическая связь между гранями, ребрами или вершинами разных элементов сборки называется сопряжением. В KOMПAC-3D задаются следующие типы сопряжений: совпадение, касание, соосность, параллельность, перпендикулярность, расположение элементов на заданном расстоянии, расположение элементов под заданным углом.
В результате операций сборки и сопряжения формируется трехмерная модель АВО (рис. 5).
Несомненную пользу в мотивации студентов к обучению приносит применение 3D-принтеров при обучении дисциплине «Инженерная графика» в ЧПОУ «Газпром техникум Новый Уренгой». Это последний этап в 3-D проектировании, когда студент может увидеть результаты своего труда. Работа с реальными физическими моделями дает возможность оценить эргономику проектируемого изделия, его функциональность и собираемость, а также исключить возможность скрытых ошибок перед запуском изделия в серию.
Рис. 5. Трехмерная модель АВО
На рис. 6 представлена физическая модель АВО, полученная в результате печати на 3-D принтере.
Рис. 6. Физическая модель АВО
Таким образом, разработка 3-D модели любого технического устройства — это сложный процесс, требующий знания современных САПР и основ проектирования, формирующий у студентов гибкость ума и неординарное мышление. Обучение по дисциплине «Инженерная графика» позволяет приобрести навыки выбора рационального способа конструирования элементов технических устройств при максимальном использовании возможностей САПР. С этой целью в учебный процесс дисциплины «Инженерная графика» вводятся практические работы по выполнению чертежей с использованием элементов 3-D проектирования.
Литература:
1. Четверухин Н. Ф. Изображения фигур в курсе геометрии. — М.: Учпедгиз, 1958. — 217 с.
2. Кригер В. Ф. Пространственно-графическое моделирование и развитие творческих способностей студентов. — Воронеж: Изд-во ВГУ, 1989. — 184 с.
3. Абрамкин С. Е., Душин С. Е. Моделирование управляемых процессов абсорбционной осушки природного газа. — СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2015. — 160 с.
4. Аппараты воздушного охлаждения // Группа компаний «Костромское машиностроение». URL: https://www.kostmash.ru/apparaty-vozdushnogo-ohlazhdeniya.html (дата обращения: 16.12.2019).
5. Операция выдавливания // КОМПАС уроки. URL: https://kompas-uroki.ru/kompas-3d/operatsiya-vydavlivaniya (дата обращения: 16.12.2019).
6. Сборка в программе КОМПАС-3D // Студия Vertex. URL: https://autocad-lessons.ru/sborka-v-programme-kompas-3d (дата обращения: 16.12.2019).