Отправьте статью сегодня! Журнал выйдет 9 августа, печатный экземпляр отправим 13 августа
Опубликовать статью

Молодой учёный

Изменение активности ферментов углеводного обмена при экспериментальном гепатите

Медицина
26.05.2018
276
Поделиться
Библиографическое описание
Алимходжаева, Н. Т. Изменение активности ферментов углеводного обмена при экспериментальном гепатите / Н. Т. Алимходжаева, Х. Н. Акбарходжаева, Д. Ш. Таджибаева, И. А. Менглиева. — Текст : непосредственный // Молодой ученый. — 2018. — № 21 (207). — С. 159-163. — URL: https://moluch.ru/archive/207/50567/.


Повышение ПОЛ при отравлении гелиотрином и ССl4 может служить фактором, дестабилизирующим митохондриальные, цитоплазматические, лизосомальные и другие клеточные мембраны (И. Г. Савин с соав. 1981).

Первым доказательством нарушения целостности мембран цитоплазмы при интоксикации ксенобиотиками, было повышение в сыворотке крови активности ферментов цитоплазмы (Ф-1–6 ФА, ЛДГ, АЛаТ, АСаТ).

Повышение проницаемости цитоплазматических мембран приводит к нарушению, в первую очередь, углеводного обмена и переаминированию аминокислот, ибо гликолиз и обеспечение его отдельными субстратами осуществляется ферментами цитозоля.

Углеводы имеют исключительно важное значение как энергетический материал, для синтеза различных фосфорсодержащих макроэргических соединений, обеспечивающих процессы биосинтеза всех компонентов клеток и нуклеиновых кислот. Обмен углеводов теснейшим образом переплетается с обменом нуклеиновых кислот, белков и жиров. При интоксикации гепатотропными ксенобиотиками ингибируются процессы синтеза глюкозы и ее эфиров из молочной и пировиноградной кислот [1, 2].

Для покрытия потребностей организма в энергии (АТФ) при нарушении гликолиза в процесс включается гексозомонофосфатный путь, т. е. прямое окисление глюкозы (пентозофосфатный путь).

Один из промежуточных продуктов пентозного пути фруктозо-6-фосфат под действием печеночно-специфического фермента фруктозо-1-фосфат альдолазы (Ф-1-ФА, КФ. 4.1.2.7) включается в гликолиз. При обеднении печени гликогеном процессе гликолиза может поддерживаться за счет превращения фруктозо-1-фосфата. Поэтому активности этих ферментов придается большое значение при изучении углеводного обмена [3]. Рядом авторов отмечено, что степень повышения активности фермента находилась в непосредственной зависимости от течения патологического процесса и от тяжести отравления ксенобиотиками экспериментальных животных.

В связи с этим для определения степени проницаемости мембран клеток и состояния углеводного обмена нами была изучена активность Ф-1-ФА в сыворотке крови, цитозоле печени, тимусе и селезенке. Результаты этих исследовании представлены в таблице 1.

Таблица 1

Показатели активности Ф-1-ФА (Е/ч ткани влиян.) ворганах крыс, получавших гепатотропные ксенобиотики (M+m) n=8–10

Исследуемые органы

Контроль

Дни исследования

50-й

70-й

Печень

86,5±4,3

46,6±1,8*

30,5±0,9

46,8±2,04*

22,5±1,3

Сыворотка крови

58,8±2,94

296±9,6*

500,1±51,6*

145,0±9,7*

430,0±45,0*

Примечание: в числителе показатели активности фермента крыс, получавших ССl4, в знаменателе гелиотрин. *р <0,05–0,001 рассчитано сравнительно с контролем.

Как видно из таблицы при введении ксенобиотиков у экспериментальных животных наблюдается понижение активности Ф-1-ФА в исследуемых органах и значительное повышение в сыворотке крови. Идентичные изменения наблюдаются и на 70-й день опыта. Так в печени крыс получавших ССl4 на 50-й день активность данного фермента понижается в 1,84 раза, а на 70-й день в 1,86 раза в тимусе в 1,56 раза и в 1,86 раза, в селезенке в 1,27 раза и в 1,1 раза соответственно. А сыворотке крови активность данного фермента увеличивается на 50-й день в 5 раз, а на 70-й день в 2,5 раза.

В процессе интоксикации гелиотрином эти показатели более яркие. Так в печени крыс на 50-й день активность Ф-1-ФА в печени понижается в 2,83 раза, а на 70-й день в 3,84 раза, в тимусе в 1,44 и в 2,6 раза, а в селезенке в 1,97 и в 2,2 раза соответственно. В сыворотке крови активность данного фермента повышалась в 8,5 раза на 50-й день и в 7,3 раза на 70-й день.

Анализ результатов исследования активности Ф-1-ФА в органах экспериментальных животных показал, что на 50-й и 70-й день опыта активность фермента падает во всех исследуемых органах, и они более выражены в печени и тимусе крыс, получавших гелиотрин.

Следующий, весьма важный для организма путь превращения углеводов — это путь превращения триоз (пировиноградной и молочной кислот). Обратимое превращение молочной кислоты в пировиноградную (ПВК) катализируется лактатдегидрогеназой (ЛДГ)- лактат; НАД оксидоредуктазой (КФ.1.1.1.27). Необходимо отметить, что в ПВК кроме глюкозы может превращаться и в ряд аминокислот (ала, цис, тре и т. д.), а также глицерин. Следовательно, этот фермент занимает ключевое место в цепи обмена веществ.

Результаты исследований различных авторов свидетельствуют о том, что при интоксикации гепатотропными ксенобиотиками (CCl4, тиоацетамид, гелиотрин и др.) происходит накопление в печени ПВК и молочной кислоты, повышение активности лактатдегидрогеназы в сыворотке крови и снижение ее уровня в ткани печени [3]. Однако, при интоксикации крыс гелиотрином и CCl4 исследование активности ключевых ферментов углеводного обмена в иммунокомпетентных органах не проводилось. Имеются лишь отдельные сообщения об изучении активности некоторых ферментов, катализирующих реакции, относящиеся к различным видам и этапам обмена веществ в гепатоцитах. Недостаточно работ о взаимосвязи органов и напряженностью иммунных реакций. В единичных работах изучены изменения в печени и иммунокомпетентных органах при интоксикации гепатотропными ксенобиотиками [4,5,6,7].

В связи с вышеизложенным, нами изучены ключевые ферменты гликолиза и глюконеогенеза. С целью установления состояния мембран цитоплазмы и митохондрий исследовали активность митохондриальной аэробной фракции ЛДГ1–2 и цитоплазматической ЛДГ4–5, где инкубационная смесь содержала 10 мл 0,5 м раствора фосфатного буфера рН-7,0; 0,8 мл 0,5 м раствора лактата натрия рН-7,4; 0,8 мл 2· 10–2 м НАД фирмы “Reanal”. Мышечную анаэробную фракцию ЛДГ исследовали в инкубационной смеси, которая содержала 10 мл 0,1м, трис-HCl буферной смеси рН-7,5 фирмы “Reanal” 0,8 мл 2· 10–2 м НАДН, 0,8 мл пируват натрия 1,92 мМ.

Результаты этих исследований представлены на рисунке 1.

Рис. 1. Изменение фракций ЛДГ в динамике отравления ССl4

Так при интоксикации ССl4 в крови наблюдается повышение аэробной фракции ЛДГ4–5 в 2,5 раза на 50-й день и в 3 раза на 70-й день, параллельно в крови наблюдается понижение анаэробной фракции ЛДГ1–2 в 2,3 раза.

В печени ЛДГ4–5 на 50-й день понижается в 2,25 раза, а на 70-й день в 1,8 раза. А фракция ЛДГ1–2 повышается в 3,9 раза на 50-й день, но на 70-й день эти показатели восстанавливаются и почти достигают нормы.

Анализ динамики изменения активности ЛДГ у отдельных групп животных получавших CCl4 и гелиотрин выявил определенные закономерности, имеющие значение в понимании механизма развития патологического процесса и их взаимосвязи со структурой и функцией ФЛ и гликолипидов.

У животных получавших гелиотрин (рис. 2) наиболее высокая активность ЛДГ4–5 в сыворотке крови (в 3,3–3,7 раза) выявлена на 50-й и на 70-й день опыта. В печени на протяжении всего опыта активность ЛДГ4–5 понижена (в 1,6- 1,78 раза) по сравнению с контролем.

Рис. 2. Изменение фракций ЛДГ в динамике отравления гелиотрином

На 50-й и 70-й день в сыворотке крови в 2,8–3,6 раза снижается уровень аэробных фракций ЛДГ1–2 — фермента. В ткани печени их содержание понижается в 2–3 раза. Указанные сдвиги, видимо, являются следствием повреждения мембран цитоплазмы и митохондрий гепатоцитов за счет структурных и функциональных изменений их ФЛ и ГЛ компонентов, приводящих в дальнейшем к выходу ферментов из митохондрий в цитоплазму и сыворотку крови.

Повышение доли анаэробной фракции в сыворотке крови и снижение в ткани печени связано с увеличением проницаемости мембран цитоплазмы с последующим нарушением глюконеогенеза из молочной кислоты. Снижение доли аэробной фракции ЛДГ1–2 в сыворотке крови и увеличение в ткани печени можно рассматривать как обстоятельство, способствующее смешению равновесия в сторону образования пирувата, из молочной кислоты. Повышение содержания ЛДГ1–2 в печени за счет снижения ЛДГ4–5 вполне согласуется с необходимостью более интенсивного вовлечения ПВК в цикл трикарбоновых кислот для покрытия потребности организма в АТФ.

В результате изучения характера изменений ЛДГ в сыворотке крови, ткани печени, установлена тесная взаимосвязь между активностью ЛДГ в сыворотке крови и в ткани печени, а также между ЛДГ1–2 и ЛДГ 4–5.

Определение их активностей имеет важное значение в решении кардинальных вопросов метаболизма углеводов и общебиологической проблемы — проблемы гипоксии в процессе интоксикации ксенобиотиками.

Все изложенное по определению активности ключевых ферментов гликолиза — Ф-1-ФА, ЛДГ1–2, ЛДГ4–5 в сыворотке крови довольно специфично отражает биохимические изменения, происходящие в цитоплазме гепатоцитов экспериментальных животных. В ранний период болезни значительно повышается активность фермента в сыворотке крови, тогда как в цитозоле уровень их понижается. В отдаленные сроки исследования наблюдается обратная картина у крыс, получавших CCl4, а у крыс, получавших гелиотрин, эти показатели остаются почти жизненными.

Таким образом, факт последовательного повышения активности ферментов цитоплазмы в сыворотке крови экспериментальных животных с одновременным снижением их уровня в печени позволяет предположить, что нарушение ферментативных реакции в клетках происходит по этапу: вначале эти процессы более выражены в цитоплазме (Ф-1-ФА, ЛДГ4–5), а затем распространяется и на другие ультраструктуры клетки, например, митохондрии (ЛДГ1–2).

Изучение активности Ф-1-ФА и ЛДГ показало, что при интоксикации крыс гепатотропными ксенобиотиками указанные гликолитические ферменты претерпевают значительные изменения и приводят к нарушению углеводного и энергетического обмена, нарушению метаболизма и структурно-функционального состояния мембран. Главным фактором, определяющим структурную организацию и функциональное состояние мембран, является их фосфолипидный состав.

Известно, что каждая фракция ФЛ входящая в состав биологических мембран, выполняет определенную функцию: способствует связыванию и транспортировке ионов, определяет активность мембраносвязанных ферментов, играет важную роль в сопряжении электронотранспортных процессов, активации лизосомальных ферментов и т. д. [7,8,9,10].

Результаты исследования состава ФЛ в печени, тимусе и селезенке крыс при введении гепатотропных ксенобиотиков, показали существенные сдвиги в их количественном содержании.

В связи с этим изучение состава ФЛ основного компонента мембран клеток представляет значение для раскрытия механизма действия гепатотропных ксенобиотиков, чему посвящены наши следующие исследования.

Литература:

  1. Исмагилова Е. Ю. Влияние различной обеспеченности крыс витамином Е и полиненасышенными жирными кислотами на антителообразуюшую функцию спленоцитов. //Матер. Ш. Всесоюзн.конф. — М.: — 1989. — Т. 2. — С.42–43.
  2. Селютина С. Н., Селютин А. Ю., Паль А. И. Модификация определения концентраций ТБК — активных продуктов сыворотки крови. //Ж. Клиническая и лабораторная диагностика. — 2000, № 2. — С.8.
  3. Сомова О. П. и др Ганглиозиды /GД3/ в сыворотке крови раковых больных.//Ж. Вопр. мед. химии. — 1991. — № 2 (37). — с.21–23.
  4. Турсунов Э. О. Ут йулларининг токсик гепатитлардаги морфологик узгаришлари. //Ж.Узб. тиб. журн. — 1999, № 5. — С.110.
  5. Тухтаева Н. К. Сурункали гелиотринли гепатитда иммуномодулиннинг иммун система аъзоларининг морфологиясига таъсири. //Ж.Узб. тиб. журн. — 1997 № V. — С.76–78.
  6. Успарвова Ж. К., Мурзахметова М. К., Азимуратова Р. Ж. Транспортные и рецепторные функции биологических мембран. Биологические мембраны и использование принципов их функционирования в практике. //Ж.Изв.Ан Каз.ССР серия биологии. — 1988. — № 6. — С.87–89.
  7. Хмельницкий О. К., Зайчик А. Ш., Зубжицкий Ю. Н. Эндокринная система и иммунитет. //7-й Всесоюзн.съезд патологоанатомов: Тез.докл. — Ташкент, 1993. — С.47–49.
  8. Алматов К. Т., Мирталипов Д. Т., Касымова Г. М., Абидов А. Изменение фосфолипидного состава и окислительного фосфорилирования в митохондриях при гепатите /Вопр. мед. химии. — 1986. Т. 32. — № 3. — С.27–30.
  9. Владимиров Ю. А., Арчаков А. И. Перекисное окисление липидов в биологических мембранах /М.: Изд-во Наука. — 1972. — С.43.
  10. Джанджагава Г. Г., Шакаришвилли Р. Р. Влияние α-токоферола и селена на активность антиоксидантных ферментов и содержание продуктов перекисного окисления липидов в эритроцитах больных ишемической болезнью мозга //Ж.Вопр. мед. химии. — 1991. — № 5. — С.79–81.
  11. Акиншина Н. Г., Гутникова А. Р. Действие пиретроидного препарата «Bulldock» на функциональное состояние митохондрий печени крыс // Материалы междунар. конф. «Митохондрии, клетки и активные формы кислорода.-Пущино, 6–9 июня, 2000.-Пущино 2000.
  12. Ваградян А. Г. Обогащенный пролином пептид (галармин)нейропротекторный модулятор окислительного повреждения при хронической алюминиевой интоксикации // Нейрохимия.-2003.-20, № 2.-С.139–142.
  13. B. А. Система глутатиона как перспективное направление изучения цитотоксических эффектов действия ксенобиотиков // 2 съезд токсикологов России, Москва 10–13 нояб., 2003: Тез. докл.-М., 2003.-С. 77–78.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №21 (207) май 2018 г.
Скачать часть журнала с этой статьей(стр. 159-163):
Часть 2 (cтр. 113-219)
Расположение в файле:
стр. 113стр. 159-163стр. 219

Молодой учёный