Отправьте статью сегодня! Журнал выйдет 12 июля, печатный экземпляр отправим 16 июля
Опубликовать статью

Молодой учёный

Библиографическое описание
Исследование механических свойств графитизированного полипропилена / Г. Ш. Гасымова, Н. Т. Кахраманов, С. А. Рзаева [и др.]. — Текст : непосредственный // Молодой ученый. — 2018. — № 16 (202). — С. 1-3. — URL: https://moluch.ru/archive/202/49495/.


Приготовлены и исследованы композиционные материалы на основе крупнотоннажного полимера — полипропилена и порошкообразного графита. Исследовано влияние предела прочности при растяжении и относительного удлинения от толщины пленки при различных количествах наполнителя. Количество последнего варьировали в широком интервале (от 1 до 7 мас. %). Было установлено, что включение частиц графита в состав полипропиленовой пленки оказывает влияние на его прочность и относительное удлинение. При использовании его в количестве 1–3 % основные механические свойства пленки примерно одинаковы: предел прочности при растяжении составляет в среднем ~42 Мпа, относительное удлинение составляет ~164 %.

Ключевые слова: полипропилен, порошкообразный графит, противоизносные свойства, антифрикционные свойства, предел прочности при растяжении

С целью улучшения физико-механических и других свойств крупнотоннажных полимеров и сополимеров, а также придания им новых дополнительных, широко используются методы, основанные включении в их состав различных добавок из числа наноразмерных частиц металлов, их оксидов, сульфидов, глин и др. [1–5].

Наполненные полимерные материалы нашли применение в различных областях техники. Так, например, металлополимерные материалы, обладающие повышенной тепло- и электропроводностью, высокой магнитной восприимчивостью и способностью экранировать ионизирующее излучение, применяются в электронной и радиотехнической промышленности для создания токопроводящих паст и клеев, в частности, трафаретов печатных пластин, специальных покрытий, фото- и рентгенорезисторов [6]. Используются они и в приборо-, авиа- и ракетостороении.

Особое место среди технически важных наполненных полимеров занимают графитизированные. Созданы различные материалы на основе полиэтилена, полипропилена, эпоксидиановых смол и других полимерных матриц и наноразмерных порошков графита.

В композициях могут использоваться и другие ингредиенты, в том числе, и сшивающие компоненты. Описана композиция, состоящая из эпоксидиановой смолы ЭД-20, отвердителя полиэтиленполиамина в соотношении (10:1мас.) и наночастиц углеродного наполнителя (от 0,05 до 3 %мас.) [7]. Обсуждена возможность формирования в нанокомпозитах электрически связанных (перколляционных) структур нанографитов и выявлена критическая концентрация наполнителя.

Известно [8], что свойства наполненного полимерного материала зависят как от свойств самой полимерной матрицы, так и используемого наполнителя, характера распределения последнего и его размеров, а также природы взаимодействия на границе раздела полимер-наполнитель.

При использовании твердых наполнителей (графита и других) в результате взаимодействия их с полимерной матрицей, уменьшается подвижность макромолекул в гранулированном слое, что существенно отражается на свойствах материала. При этом могут измениться реологические свойства системы в целом. Поэтому проведение целенаправленных исследований по разработке новых композиций с использованием недорогих наполнителей и других добавок является важной задачей.

В настоящей статье приводятся результаты наших исследований по разработке композиционных материалов на основе крупнотоннажного полимера — полипропилена и порошкообразного графита. Количество последнего варьировали в широком интервале (от 1 до 7 мас. %)

Экспериментальная часть

Полимерные композиции, состоящие из рассчитанных количеств промышленного пропилена (марки Moplen) и порошкообразного графита готовились путем их тщательного смешивания на вальцах при температуре 180–1900С (в течение 8–10 мин). Образцы для испытания готовились в виде пленки толщиной ~1–2 мм общепринятым методом. На разрывной машине определяли предел прочности на разрыв и относительное удлинение.

Для получения надежных результатов проводились 3–4 испытания для образцов с одинаковым содержанием наполнителя.

Полученные результаты приводятся в таблице.

Таблица 1

Зависимость предела прочности при растяжении иотносительного удлинения от толщины пленки при различных количествах наполнителя

N/N

опытов

Количество наполнителя (графита мас.),%

Толщина пленки, мм

Предел прочности при растяжении, МРа

Относительное удлинение

1 %

1,64

46,90

184

1 %

1,58

46,44

180

1 %

1,69

45,51

200

1 %

1,58

44,18

180

Среднее значение

1,62

45,75

186

3 %

1,44

38,64

158

3 %

1,45

40,32

146

3 %

1,47

42,70

140

3 %

1,48

41,64

148

Среднее значение

1,46

40,8

148

5 %

1,43

36,2

140

5 %

1,47

37,8

138

5 %

1,49

37,8

142

5 %

1,51

38,0

147

Среднее значение

1,48

37,4

142

7 %

1,49

35,0

105

7 %

1,56

33,7

96

7 %

1,78

34,2

98

7 %

1,74

34,5

102

Среднее значение

1,64

34,3

99,

Как видно из результатов экспериментов, приведенных в таблице, включение частиц графита в состав полипропиленовой пленки оказывает влияние на его прочность и относительное удлинение. При использовании его в количестве 1–3 % основные механические свойства пленки примерно одинаковы: предел прочности при растяжении составляет в среднем ~42 МПа, относительное удлинение составляет ~164 %.

Следует отметить, что использование графитового порошка в количестве 5–7 % несколько снижает эти показатели, что можно объяснить свойствами самого графита (его хрупкостью и невысокой твердостью) Использование его как наполнителя должно существенным образом отражаться на антифрикционных и противоизносных свойствах композита. Кроме того, общеизвестно, что включение графита в межцепные структуры полимеров положительно сказывается на их устойчивости к тепловым воздействиям, что очень важно с точки зрения их применения в различных условиях эксплуатации.

Литература:

  1. Н. Ю. Ковалева, П. Н. Бревнов. Синтез нанокомпозитов на основе полиэтилена и слоистых силикатов методом интеркалляционной полимеризации. // Высокомолекулярные соединения, — 2004. — Серия Б. — Т. 46. — № 5. — С.1045–1051
  2. Г. И. Шайдурова, А. В. Малышева. Аналитические исследования по реализации наноструктур в полимерных композициях.// Master’s journals. — 2016. — № 2. — С. 87–92
  3. G.Sh. Gasimova, N. T. Gahramanov, S. S. Pesetskiy, M. M. Ibrahimova, S.Kh. Gasimzade. Nanocomposites with the improved tribotechnical characteristics on the basis of polyolefins. // The Usa Journal of Applied Sciences. — 2017. — № 4. — Р 6–9.
  4. М. В. Якемсева, Н. В. Усольцева / Материалы 2 Международной научно-технической конференции «Полимерные композиты и трибология» (ПОЛИКОМТРИБ-2013). ГОМЕЛЬ, — 2013, — С.284–285
  5. З. Л. Ней, Д. А. Илатовский, В. С. Борисова, В. С. Осипчик, Т. П. Кравченко. Изучение свойств высоконаполненных полиолефиновых композиций. //Успехи в химии и химической технологии, — 2015. — Т. XXIX. — № 10 — С. 41–43
  6. А. Д. Помогайло, Г. И. Джардималиева. Металлополимерные гибридные нанокомпозиты. / Москва. Наука. — 2015. — 489с.
  7. П. Г. Скрыльник, А. М. Зиатдинов. Композиты нанографитов и их пленочные структуры // Материалы 10 Международной конференции «Углерод: фундаментальные проблемы наук, материаловедение, технология», Москва, 2016, Сборник тезисов докладов, — С.406–407
  8. Энциклопедия полимеров / Москва, — 1974, — Т. 327
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт
и справку о публикации.
Опубликовать статью
Ключевые слова
полипропилен
порошкообразный графит
противоизносные свойства
антифрикционные свойства
предел прочности при растяжении
Молодой учёный №16 (202) апрель 2018 г.
Скачать часть журнала с этой статьей(стр. 1-3):
Часть 1 (стр. 1-89)
Расположение в файле:
стр. 1стр. 1-3стр. 89

Молодой учёный