При исследовании методом КВУ после снижения уровня свабом устье скважины остается открытым. В стволе скважины происходит подъем уровня жидкости. Сжатие жидкости в стволе скважины играет несущественную роль, изменение давления (т.н. кривая притока или КВУ) в скважине в основном определяется изменением гидростатического давления вследствие подъема уровня [4, с. 45].
Для регистрации данных, используют несколько способов измерения забойного давления.
Способ 1. Прекращают отбор жидкости из скважины. В ствол скважины опускают дистанционный или автономный манометр, устье скважины после свабирования оставляют открытым. Регистрируют кривую изменения давления во времени, т.н. кривую притока (КП).
Способ 2. При проведении ПГИ в свободное время ожидания между потокометрическими измерениями скважинный прибор устанавливают на одну и ту же глубину и регистрируют фрагменты изменения давления во времени. Затем эти фрагменты сшиваются при обработке в одну кривую изменения давления и обрабатываются.
Способ 3. При подготовке скважины для освоения свабом, при спуске колонны НКТ в специальном контейнере за НКТ спускают автономный манометр. Он регистрирует всю историю изменения давления в скважине при освоении свабом. После подъема НКТ извлекают манометр и получают КИД, которая содержит зависимость давления от времени для всех периодов и циклов свабирования [1, с. 24].
Длительность кривой изменения давления зависит от продуктивности скважины, плотности жидкости, площади сечения поднимающегося в стволе скважины потока жидкости и наклона ствола скважины к вертикали. При регистрации КП дистанционным прибором достаточная длительность регистрации может быть оценена в процессе измерений. Для этого достигнутое время регистрации делят пополам и находят отношение приращения давления р2 к приращению давления р1 за первую половину времени. Если это отношение меньше 2/3, то такая КП может быть обработана с целью определения гидродинамических параметров пласта. При использовании автономных манометров такой возможности нет. Для предварительной оценки минимального времени регистрации КП можно воспользоваться формулой:
(1)
Где V—объем жидкости, который должен поступить в ствол скважины для установления статического уровня; Q0 — дебит в момент остановки скважины.
Объем V можно оценить как произведение S на H, где S- площадь сечения поднимающегося в стволе остановленной скважины потока, а H — разница между динамическим и статическим уровнями жидкости в стволе скважины [5].
За указанное время не произойдет полного восстановления давления в пласте и скважине, а ожидается примерно трехкратное уменьшение первоначального дебита. Поэтому целесообразно, по возможности, реальное время регистрации КП выбрать больше t0 [3, c. 26].
При регистрации КП автономным манометром определяют не менее 4–5 положений динамического уровня и глубины НВР в стволе скважины, равномерно распределив измерения на весь интервал исследований.
При регистрации КП дистанционной комплексной аппаратурой измерение давления в точке прерывается, определяется положение ДУ и НВР, затем прибор возвращается на прежнюю глубину измерения и продолжается запись изменения давления во времени. При обработке из фрагментов формируется одна кривая притока [3, с. 93].
Обработка данных.
Гидропроводность — это способность пласта-коллектора пропускать через себя жидкость, насыщающую его поры (способность пласта-коллектора пропускать газ называется проводимостью) и выражается формулой:
(2)
где — гидропроводность пласта; k — проницаемость; h — толщина пласта; — вязкость жидкости, насыщающей поры пласта.
Есть методы обработки данных КВУ позволяющие определить гидропроводность пласта и оценить состояние призабойной зоны через скин-фактор. Среди методов линейной анаморфозы это операционный метод Баренблатта и обобщенный дифференциальный метод Мясникова. Для их корректного использования необходим учёт всей истории изменения дебита и забойного давления в скважине [2, с. 79].
Скин-фактор — это гидродинамический параметр, характеризующий дополнительное фильтрационное сопротивление течению флюидов в околоскважинной зоне пласта, приводящее к снижению дебита по сравнению с совершенной скважиной. Причинами скин-фактора являются гидродинамическое несовершенство вскрытия пласта, загрязнение прискважинной зоны и прочие нелинейные эффекты. Применяя уравнение Дюпюи для плоскорадиального установившегося потока несжимаемой жидкости к вертикальной скважине:
(3)
где K — коэффициент продуктивности; Q — дебит; — изменение давления; S — скин-фактор.
Получаем выражение для скин-фактора:
(4)
где S—скин-фактор; K0 — потенциальная продуктивность, которая может быть получена от совершенной скважины (при отсутствии скин-фактора); K— фактическая продуктивность реальной скважины; Rк — радиус контура питания (воронки депрессии), то есть расстояние от скважины до зоны пласта, где давление полагается постоянным и равным текущему пластовому давлению (примерно половина расстояния между скважинами); rc — радиус реальной скважины по долоту в интервале вскрытия пласта.
Выводы.
По результатам обзора технологий освоения малодебитных скважин и гидродинамических исследований в процессе освоения скважин можно сделать следующие выводы:
− свабирование является самым распространенным способом освоения скважин;
− геофизические и гидродинамические исследования удачно вписываются в технологию освоения скважин свабом;
− при освоении скважин свабом ГДИ обычно реализуются по технологии КВУ, в результате этого определяют только коэффициент продуктивности и пластовое давление;
− гидродинамические поля — источник дополнительной информации, часто получаемой при освоении скважин попутно. Интерпретация и обработка данных ГДИ и геофизических исследований должна быть комплексной. ГДИ легко вписываются во все известные технологии освоения нефтяных скважин.
Литература:
- Рамазанов А. Ш. Исследование алгоритмов обработки кривых притока малодебитных скважин // НТВ Каротажник. – 2000. – с. 113.
- Кульпин Л. Г., Мясников Ю. А. Гидродинамические методы исследования нефтегазоводоносных пластов: учебник. М.: Недра, 1974. – 200 с.
- Самохин О. Н., Зарипов Р. Р., Хакимов В. С. Эффективный способ гидродинамических исследований пластов с применением модуля гидродинамических исследований МГДИ-54. — Патент РФ № 2341653 от 09.03.2007 г.
- Вольпин С. Г., Мясников Ю. А. Исследование малодебитных скважин в России // Нефтяное обозрение. – Весна, 1999 г. – с. 92.
- Ипатов А. И., Кременецкий М. И. Геофизический и гидродинамический контроль разработки месторождений углеводородов. М.: НИЦ Регулярная и хаотическая динамика: Институт компьютерных исследований, 2005. – 780 с.