Двигатель КамАЗ 820.61–260: особенности системы питания и типовые неисправности | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 2 ноября, печатный экземпляр отправим 6 ноября.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №14 (118) июль-2 2016 г.

Дата публикации: 13.07.2016

Статья просмотрена: 13067 раз

Библиографическое описание:

Васенин, А. С. Двигатель КамАЗ 820.61–260: особенности системы питания и типовые неисправности / А. С. Васенин, А. Г. Шумков. — Текст : непосредственный // Молодой ученый. — 2016. — № 14 (118). — С. 128-131. — URL: https://moluch.ru/archive/118/32552/ (дата обращения: 19.10.2024).



Статья содержит информацию о перспективном типе двигателя — двигателе, спроектированном для работы на компримированном природном газе. В работе рассмотрен состав системы питания двигателя КамАЗ 820.61–260, произведен анализ часто возникающих неисправностей, установлены причины возникновения неисправностей. Предложены мероприятия для устранения неисправностей.

Ключевые слова: КамАЗ-820.61–260, редуктор газовый, форсунка топливная, компримированный природный газ, отказ

Одним из актуальных направлений развития современного автомобилестроения является создание двигателей, использующих в качестве топлива компримированный природный газ [1]. Компримированный природный газ — метан — в отличие от сжатого природного газа — смеси пропана и бутана — имеет следующие преимущества: меньшая стоимость 1 литра метана по сравнению с пропан-бутаном, наиболее низкая токсичность отработавших газов. Кроме того, расширение парка подвижного состава, использующего в качестве топлива метан, поддерживается Правительством Российской Федерации [2]. В частности, на все большее количество автобусов, предназначенных для перевозки пассажиров в черте города, устанавливают двигатели, использующие в качестве топлива компримированный природный газ. Учитывая особенности использования компримированного природного газа в качестве топлива, выявление причин отказов топливной системы двигателя и оперативное обнаружение неисправностей позволят создать рекомендации для правильной эксплуатации подвижного состава с двигателями, использующими в качестве топлива метан.

Для использования компримированного природного газа в качестве топлива Нефтекамским автомобильным заводом был спроектирован двигатель КамАЗ-820.60–260.

Рабочий объем двигателя 11.762 л, при этом номинальная мощность составляет 260 л.с. при 2200 об/мин.

Для работы двигателя на компримированном природном газе и повышения мощности степень сжатия снижена до 12 единиц; система питания двигателя представляет собой распределенный впрыск с 1 форсункой на цилиндр [3]. Система зажигания электронная, имеет индивидуальные катушку зажигания свечу зажигания на каждый цилиндр. Модификации 820.60–260 и 820.61–260 не имеют конструктивных различий: первая устанавливается на шасси автомобилей КамАЗ, вторая — на шасси автобусов НефАЗ.

Рассмотрим основные конструктивные элементы системы питания двигателя КамАЗ 820.61–260, схема представлена на рисунке 1.

схемка

Рис. 1. Схема системы питания двигателя КамАЗ 820.61–260: 1 — Баллон газовый, 2 — Вентиль, 3 — Фильтр магистральный, 4 — Редуктор газовый двухступенчатый, 5 — Клапан электромагнитный низкого давления, 6 — Рампа топливная, 7 — Форсунка топливная, 8 — Заслонка дроссельная

а) Баллон газовый. Основной особенностью метана как химического соединения является его низкая плотность по сравнению с атмосферным воздухом: плотность метана в 2 раза меньше плотности воздуха, температура перехода метана из газообразного состояния в жидкое происходит при температуре — 1680 С — именно поэтому для обеспечения приемлемого запаса хода транспортного средства метан сжимают до давления 20 МПа [3]. Соответственно баллоны, в которых хранится метан, обладают следующими требованиями:

‒ рабочее давление баллона 20 МПа.

‒ давление наполнения 26 МПа

‒ разрушающее давление не менее 48 МПа [5]

Вследствие высокого рабочего давления баллоны изготавливают из металлокомпозита. Для снижения массы применяют переменную толщину стенки баллонов. Периодичность освидетельствования баллонов необходима 1 раз в три года, срок службы — 15 лет [5].

б) Вентиль, которым оснащен блок газовых баллонов, имеет 5 степеней защиты

1) Ручной вентиль для перекрытия подачи газа — используется при длительных простоях транспортного средства / при ремонтых воздействиях, связанных с отсоединеним элементов системы питания [5].

2) Устройство для аварийного сброса давления — представляет собой плавкий предохранитель, который в случае пожара предотвратит нарастание давления и последующее разрушение баллона. Температура срабатывания предохранителя 1100 С. Следует отметить, что температура воспламенения метана 640–6500 С в соответствии с рисунком 5, концентрация для образования взрывоопасной смеси должна в 4 раза превышать концентрацию пропан-бутановой смеси, что позволяет отнести метан к 4 классу воспламеняющихся веществ.

3) Устройство, обеспечивающее сброс метана при превышении давления в 37 МПа.

4) Электромагнитный клапан высокого давления — обеспечивает оперативное управление открытием баллонов с рабочего места водителя и предназначен для использования во время рабочей смены транспортного средства.

5) Скоростной клапан, представляющий собой дроссель. Необходим для ограничения скорости потока газа и предотвращения мгновенного падения давления через разгерметизованное соединение [5].

в) Фильтр магистральный является следующим элементом системы питания. Фильтр необходим для очистки газа от веществ, ухудшающих эксплуатационные свойства: в частности при перекачивании газа на компрессорных станциях в него попадают продукты износа поршневой группы насосов и конденсат воды — таким образом, фильтр состоит из фильтрующего элемента тонкой очистки газа и осушителя для удаления паров воды из топлива.

г) Трубопроводы газовые высокого давления представляют собой трубки, выполненные из нержавеющей стали. Толщина стенки составляет 1 мм, внешний диаметр 8 мм. Герметизация трубопроводов при соединении происходит за счет ниппельного соединения по наружному конусу [5].

д) Редуктор газовый двухступенчатый предназначен для снижения давления компримированного природного газа с 20 МПа до 0.37 МПа и поддержания давления 0.37 МПа на всех режимах работы двигателя до падения давления в баллонах ниже 0.37 Мпа [9]. Редуктор включает в себя клапан аварийного снижения давления в первой ступени при повышении давления выше расчетных значений, а также систему подогрева для предотвращения замерзания клапанов первой и второй ступеней в процессе понижения давления. Система подогрева связана с системой охлаждения двигателя, т. е. редуктор обогревается охлаждающей жидкостью [5].

е) Клапан электромагнитный низкого давления для управления топливной магистралью низкого давления служит запорным механизмом для управления потоком природного газа после редуктора. Установлен на топливной рампе [5].

ж) Форсунки топливные являются исполнительными устройствами системы питания. Ввиду особенностей конструкции двигатель КамАЗ 820.61–260 имеет 2 топливные рампы, непосредственно в которую интегрированы топливные форсунки с электромагнитным управлением. В верхней части форсунки расположен соленоид, при подаче напряжения на который якорь форсунки поднимается и происходит подача газа во впускной коллектор данного цилиндра. При отсутствии напряжения якорь возвращается на место под действием пружины [5].

Система питания двигателя КамАЗ 820.61–260 не лишена недостатков, которые приводят к отказам, представленным в таблице 1.

Таблица 1

Отказы системы топливной

Причина

Следствие

Отказ

Недостаточная мощность встроенного подогревателя редуктора

Потеря эластичности мембраны камеры высокого давления с последующим прорывом

Повреждение мембраны камеры высокого давления

Износостойкость материала пружины не соответствует условиям эксплуатации

Изгиб возвратной пружины в рабочем колодце

Отказ топливной форсунки с заклиниванием запорного клапана в открытом положении

Величина хода якоря значительна (составляет 0.63 мм)

Появление повреждений в форме концентрических окружностей на седле якоря

Неисправность топливной форсунки, связанная с потерей герметичности

Отказ редуктора газового с повреждением мембраны камеры высокого давления. Газовый редуктор для топливной системы КамАЗ 820.61–260 двухкамерный, первая камера понижает давление с 200 МПа до 50 МПа, вторая — с 50 МПа до 3 МПа [6]. Повреждение мембраны представляет собой сквозной прорыв в виде полумесяца, представленное на рисунке 2, вследствие чего редуктор не может эффективно понижать давление [6].

Рис. 2. Повреждение мембраны редуктора газового

Признаки отказа: неустойчивая работа двигателя на холостом ходу, невозможность пуска холодного двигателя — из-за превышения порога давления в 4.6 МПа топливные форсунки могут не открыться. Причиной данной неисправности является низкая мощность встроенного подогрева редуктора, составляющая 20 Вт. В отличие от би-топливных систем питания, в которых пуск и прогрев двигателя происходит на бензине или дизельном топливе и, как следствие, при включении газовой системы питания редуктор омывается теплой охлаждающей жидкостью, двигатель КамАЗ 820.61–260 запускается непосредственно на компримированном природном газе. Именно для предотвращения обмерзания клапанов редуктора, и потери эластичности мембран необходим встроенный подогрев, так как при расширении и понижении давления газ резко охлаждается.

Отказ топливной форсунки с заклиниванием якоря в открытом положении. Заклинивание форсунки в открытом состоянии происходило, предположительно, из-за перекоса возвратной пружины — витки возвратной пружины с одной стороны имеют потертости до металлического блеска, тогда как основной оттенок пружины — матовый, пружина представлена на рисунке 3 [7].

Рис. 3. Пружина возвратная

Возвратная пружина необходима для перемещения якоря и прекращения подачи газа. Кроме того, сила упругости пружины должна быть подобрана таким образом, чтобы позволять наиболее быстрое открытие форсунки и наиболее быстрое закрытие, противодействуя магнитному полю катушки, которое нелинейно исчезает при снятии управляющего импульса. Следует отметить, что газовая форсунка, в отличие от бензиновой, управляется сигналом широтно-импульсной модуляции вследствие малого сопротивления обмотки катушки. Таким образом, за время впрыска на катушку форсунки подается напряжение в виде пульсаций определенной скважности, причем частота пульсаций высока, так что катушка не перегревается. Для сравнения сопротивление форсунки бензинового двигателя составляет 16–17 Ом, тогда как сопротивление обмотки катушки газовой форсунки — около 7 Ом — вследствие чего при подаче на нее постоянного напряжения возможен перегрев и перегорание обмотки катушки [7].

Для устранения выявленных отказов могут быть осуществлены следующие мероприятия:

1) Увеличение мощности встроенного подогревателя газового редуктора позволит предотвратить снижение эластичности мембраны камеры высокого давления и избежать ее повреждения.

2) Заменить материал изготовления пружины с более высокими показателями износостойкости, т. е. более подходящий для условий эксплуатации данного элемента.

В статье поэлементно рассмотрена система питания двигателя КамАЗ 820.61–260, определены наиболее частые отказы ее элементов, установлены причины отказов и предложены мероприятия для их устранения.

Литература:

  1. Пронин, Евгений. Перспективы метана на транспорте [Электронный ресурс]. — Электрон. текст. дан. — Режим доступа: http://www.gazpronin.ru/GazPronin2013.shtml, свободный. (Дата обращения: 1.06.2016).
  2. О использовании природного газа в качестве моторного топлива [Текст]: Распоряжение Правительства РФ от 13 мая 2013 г. // Собрание законодательства. — 2013. — № 20. — Ст. 2551.
  3. Семейство газовых двигателей КамАЗ 820.60 [Электронный ресурс]. — Электрон. текст. дан. — Режим доступа: http://www.kamaz.ru/production/related/semeystvo-gazovykh-dvigateley-kamaz-820–60/, свободный. (Дата обращения: 25.05.2016).
  4. Инструкция по диагностике электронной системы управления газовых двигателей КамАЗ, мод. 820.60–260 (820.61–260) — Н. Челны: ОАО «КамАЗ», 2012–20 с.
  5. Двигатель на метане [Электронный ресурс]. — Электрон. текст. дан. — Режим доступа: http://raritek-gba.ru/met/, свободный. (Дата обращения: 26.05.2016).
  6. Двигатели транспортные газовые КАМАЗ-820.52–260, Камаз-820.53–260 [Электронный ресурс]. — Электрон. текст. дан. — Режим доступа: http://www.remkam.ru/trangazdv82/, свободный. (Дата обращения: 1.06.2016)
  7. Особенности работы и сервисного обслуживания газовых форсунок автомобильных двигателей [Электронный ресурс]. — Электрон. текст. дан. — Режим доступа: http://kostagas.ru/content.php?id=56, свободный. (Дата обращения: 30.05.2016)
Основные термины (генерируются автоматически): компримированный природный газ, высокое давление, качество топлива, возвратная пружина, двигатель, КамАЗ, редуктор, система питания двигателя, топливная форсунка, транспортное средство.


Ключевые слова

отказ, КамАЗ-820.61–260, редуктор газовый, форсунка топливная, компримированный природный газ

Похожие статьи

Обзор неисправностей, возникающих при эксплуатации двигателя внутреннего сгорания, использующего в качестве топлива компримированный природный газ

Статья посвящена рассмотрению неисправностей, возникающих в процессе эксплуатации двигателя КамАЗ 820.61–260 на газовом топливе. Произведен анализ часто возникающих неисправностей элементов системы питания, установлены причины возникновения неисправн...

Анализ методик диагностики топливной системы двигателя КамАЗ 820.61–260

Двигатель КамАЗ 820.61–260 оснащен топливной системой с распределенным впрыском топлива, для чего используются сигналы датчиков различных систем двигателя. Диагностика неисправностей топливной системы двигателя осуществляется по стандарту OBD-2. Одна...

Применение природного газа и рециркуляции отработавших газов для снижения токсичности тракторного дизеля

В Вятской государственной сельскохозяйственной академии на базе кафедры теп-ловых двигателей, автомобилей и тракторов осуществлена разработка модификации дизеля 4Ч 11,0/12,5 (Д-240) трактора МТЗ-80 для работы на природном газе с рециркуляцией отработ...

Перспективность внедрения генератора синтез-газа в систему двигателя автомобиля, работающего на пропан-бутане

В статье рассмотрен вопрос проблемы использования газомоторного топлива среди автовладельцев. Проанализированы работы, посвящённые экономической эффективности применения газового топлива. Проведен социальный опрос среди автовладельцев Волгограда на в...

Анализ дизельных двигателей с добавлением водорода

В статье рассматриваются дизельные двигатели грузовых автомобилей с добавлением водорода в топливовоздушную смесь. Способы хранения топлива на борту транспорта. Способы доставки газообразного топлива в камеру сгорания. Также рассматривается экономиче...

Особенности методики стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе

В данной статье рассмотрена методика стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе.

Совершенствование систем технического диагностирования малооборотных судовых дизелей

В статье исследован вопрос влияния аберрации определения верхней мертвой точки малооборотного судового двигателя на нагарообразование выхлопного тракта. Предложенные усовершенствования методики диагностирования индикаторного процесса в малооборотном ...

Особенности процесса сгорания в дизеле 2Ч 10,5/12,0 при работе на метаноле с двойной системой топливоподачи

В Вятской государственной сельскохозяйственной академии на базе кафедры тепловых двигателей, автомобилей и тракторов осуществлена разработка дизеля 2Ч 10,5/12,0 для работы на метаноле с использованием двойной системы топливоподачи. В работе приводитс...

Повышение эксплуатационной надежности турбокомпрессора дизеля 10Д100

Данная статья посвящена вопросам повышения эксплуатационной надежности дизелей магистральных тепловозов. В частности, основное внимание уделяется повышению надежности и эффективности работы турбокомпрессоров. Представлен анализ причин основных неиспр...

Исследование эффективных показателей дизеля Д-245.7 при работе на дизельном топливе и природном газе

В данной статье рассмотрено исследование эффективных показателей дизеля Д-245.7 при работе на дизельном топливе и природном газе.

Похожие статьи

Обзор неисправностей, возникающих при эксплуатации двигателя внутреннего сгорания, использующего в качестве топлива компримированный природный газ

Статья посвящена рассмотрению неисправностей, возникающих в процессе эксплуатации двигателя КамАЗ 820.61–260 на газовом топливе. Произведен анализ часто возникающих неисправностей элементов системы питания, установлены причины возникновения неисправн...

Анализ методик диагностики топливной системы двигателя КамАЗ 820.61–260

Двигатель КамАЗ 820.61–260 оснащен топливной системой с распределенным впрыском топлива, для чего используются сигналы датчиков различных систем двигателя. Диагностика неисправностей топливной системы двигателя осуществляется по стандарту OBD-2. Одна...

Применение природного газа и рециркуляции отработавших газов для снижения токсичности тракторного дизеля

В Вятской государственной сельскохозяйственной академии на базе кафедры теп-ловых двигателей, автомобилей и тракторов осуществлена разработка модификации дизеля 4Ч 11,0/12,5 (Д-240) трактора МТЗ-80 для работы на природном газе с рециркуляцией отработ...

Перспективность внедрения генератора синтез-газа в систему двигателя автомобиля, работающего на пропан-бутане

В статье рассмотрен вопрос проблемы использования газомоторного топлива среди автовладельцев. Проанализированы работы, посвящённые экономической эффективности применения газового топлива. Проведен социальный опрос среди автовладельцев Волгограда на в...

Анализ дизельных двигателей с добавлением водорода

В статье рассматриваются дизельные двигатели грузовых автомобилей с добавлением водорода в топливовоздушную смесь. Способы хранения топлива на борту транспорта. Способы доставки газообразного топлива в камеру сгорания. Также рассматривается экономиче...

Особенности методики стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе

В данной статье рассмотрена методика стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе.

Совершенствование систем технического диагностирования малооборотных судовых дизелей

В статье исследован вопрос влияния аберрации определения верхней мертвой точки малооборотного судового двигателя на нагарообразование выхлопного тракта. Предложенные усовершенствования методики диагностирования индикаторного процесса в малооборотном ...

Особенности процесса сгорания в дизеле 2Ч 10,5/12,0 при работе на метаноле с двойной системой топливоподачи

В Вятской государственной сельскохозяйственной академии на базе кафедры тепловых двигателей, автомобилей и тракторов осуществлена разработка дизеля 2Ч 10,5/12,0 для работы на метаноле с использованием двойной системы топливоподачи. В работе приводитс...

Повышение эксплуатационной надежности турбокомпрессора дизеля 10Д100

Данная статья посвящена вопросам повышения эксплуатационной надежности дизелей магистральных тепловозов. В частности, основное внимание уделяется повышению надежности и эффективности работы турбокомпрессоров. Представлен анализ причин основных неиспр...

Исследование эффективных показателей дизеля Д-245.7 при работе на дизельном топливе и природном газе

В данной статье рассмотрено исследование эффективных показателей дизеля Д-245.7 при работе на дизельном топливе и природном газе.

Задать вопрос