Отправьте статью сегодня! Журнал выйдет 2 августа, печатный экземпляр отправим 6 августа
Опубликовать статью

Молодой учёный

Разностная краевая задача для уравнения смешанного типа

Математика
27.04.2016
222
Поделиться
Библиографическое описание
Меражова, Ш. Б. Разностная краевая задача для уравнения смешанного типа / Ш. Б. Меражова. — Текст : непосредственный // Молодой ученый. — 2016. — № 8 (112). — С. 21-23. — URL: https://moluch.ru/archive/112/28669/.


В прямоугольной области изучается краевая задача для модельного уравнения второго порядка

(1)

где

и ,

и ,

.

Пусть , , вектор внутренней нормали к границе области , . Заметим, что уравнение (1) в области является уравнением смешанного типа. А именно в оно будет гиперболо-параболическим, в эллиптико-параболическим, прямая есть линия вырождения типа уравнения.

Краевая задача: Найти в области решение уравнение (1) условие:

(2)

Численное решение краевой задачи (1)-(2) является непростой задачей ввиду того, что для нее не построена устойчивая разностная схема. В настоящей работе предлагается конструктивный подход построения устойчивой разностной схемы. При построении разностной схемы учитывается тип уравнения, т. е. строится гибридная схема.

С помощью функционального подхода в работе [1] доказана следующая теорема:

Теорема1. Пусть выполнены условия

в окрестности точек и , кроме того, вдоль характеристики. Тогда если решение задачи (1)-(2) их пространства существует, то оно единственно. Здесь через обозначено пространство Соболева с весом, которое получается замыканием класса дважды непрерывно дифференцируемых в функций, удовлетворяющих условию (2) по норме:

.

Разностная схема. Схему будем строить отдельно в области и отдельно в области . С этой целью в области строим разностную сетку, . Здесь — шаг по , а — шаг по .

Введем в рассмотрение следующие обозначения:

, , — операторы сдвига: , ,

а также — разностные операторы: .

С помощью этих обозначений в области предлагаем следующую разностную схему:

Разностная схема (3)-(4) является незамкнутой. Для нее требуется задание так называемого дополнительного граничного и начального условия. Для простоты мы предлагаем следующие дополнительные начальные и граничные условия:

, (5)

, , (6)

Система линейных алгебраических уравнений (3)-(6) относительно неизвестных — образует полную систему. Для разностной схеме верна следующая оценка:

(7)

Шаги разностной сетки выбираем из условия:

и , ; (8)

Тогда если , то , при , .

Таким образом, энергетическая оценка (7) при условии (7) обеспечивает однозначную разрешимость и устойчивость разностной схемы (3) –(6) в области .

Разностную схему исследуем в области . Поскольку уравнение (1) в области является гиперболо-параболическим, применяем следующий подход. Заменим уравнение (1) в области эквивалентной ему симметрической системой первого порядка:

, , (9)

где , , , ,

условием при (если )

, , (10)

Для задачи (9)-(10) легко можно получить априорную оценку:

,

где , , — некоторые постоянные.

В частности при , имеем и

откуда следует и следовательно , в области . Это дает нам возможность легко применить разностные схемы, предложенные в работе [2] для численного решения уравнения (1) в области и получить энергетические оценки типа (8).

Литература:

  1. Рахмонов Х. О. О первой краевой задаче для одного уравнения смешанного типа в пространстве. — Новосибирск, 1985. -22с. (Препринт/ АН СССР, сиб.отд. ИМ, N-12).
  2. Алаев Р. Д. Метод диссипативных интегралов энергии для разностных схем. Изд-во Новосибирского университета, 1993, 68 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №8 (112) апрель-2 2016 г.
Скачать часть журнала с этой статьей(стр. 21-23):
Часть 1 (cтр. 1 - 137)
Расположение в файле:
стр. 1стр. 21-23стр. 137

Молодой учёный