Библиографическое описание:

Шаврин О. И., Скворцов А. Н. Конечно-элементный анализ теплового состояния упругих элементов в процессе МДТМО [Текст] // Технические науки в России и за рубежом: материалы III междунар. науч. конф. (г. Москва, июль 2014 г.). — М.: Буки-Веди, 2014. — С. 88-91.

Рассматриваются результаты решение в программном комплексе ANSYS тепловой задачи при навивке пружины в ходе малодеформационной термомеханической обработки. Исследовано влияние материала оправки, различных охлаждающих сред и разделительного устройства на изменение теплового состояния навитой пружины в процессе последеформационной выдержки и закалки в закалочной ванне.

Ключевые слова: малодеформационная термомеханическая обработка, пружина, упрочнение

In article results the decision in program complex ANSYS of a thermal problem are considered at manufacturing of a spring during,low-deformation thermomechanical processing. Influence of a material a core, various cooling environments and the dividing device on change of a thermal condition of the wound spring in process post-deformation endurance and training in a hardening bath is investigated.

Key words:low-deformation thermomechanical processing, spring, hardening

Для конструкционных материалов и изделий, которые из них изготавливаются, под нанотехнологией нужно понимать процессы формирования каких-либо элементов структуры, получающих наноразмеры, соответствующие установленному требованию — менее 100 нм хотя бы в одном из направлений измерения. Упрочняющее воздействие наноразмерных элементов структуры — торможение дислокаций, обеспечивающее повышение сопротивления деформации под действием напряжений. Такими элементами структуры могут быть границы зерен, дисперсные выделения, границы субзерен, образующихся в результате перестроения дислокаций, образовавшихся в ходе пластической деформации, применяющейся либо при производстве металла, либо при изготовлении деталей. С точки зрения реализации нанотехнологий в производстве изделий машиностроения наиболее актуальным является создание технологий формирования наноразмерных элементов структуры металла в готовой детали.

Одной из практически реализованных технологий наносубструктурного упрочнения высоконагруженных деталей — упругих элементов, является малодеформационная термомеханическая обработка (МДТМО). Технология, технологическое оборудование, технологическая оснастка для производства пружин подвески железнодорожной техники разработаны и реализованы на вновь созданном предприятии ООО НПЦ «Пружина» под руководством д. т.н., профессора О. И. Шаврина. Проведенные исследования показали перспективность внедренной технологии, в частности, получено значительное повышение долговечности при одинаковых условиях испытаний (200–300 тысяч циклов у пружин произведенных по обычной технологии, и более 10 млн. циклов по технологии МДТМО) снижение осадки (6 мм — у первых, 0.6 мм после МДТМО), повышение стабильности межвиткового зазора [1].

Проведение натурных экспериментов является процессом длительным и дорогостоящим. Альтернативой получения информации является использование пакетов конечно-элементного анализа. При проведении исследований использовался ANSYS v.14.5 (лицензия — номер пользователя 607281).

Технология МДТМО винтовых пружин заключается в индукционном нагреве прутка, навивке нагретого прутка на оправку и последующей повитковой закалке с обязательной регламентированной последеформационной выдержкой. [2] Схема процесса — на рис. 1.

При непрерывно-последовательном нагреве продольно перемещающегося через секции индуктора прутка обеспечивается достаточная стабильность температуры по длине прутка и допустимый перепад по сечению. Разделительное устройство (3, рис.1) вводится для повышения производительности процесса.

Для изготовления качественных пружин важно знание теплового состояния витка навитой пружины во время последеформационной выдержки и в процессе охлаждения. Если контроль температуры поверхности возможен различными бесконтактными способами, то определение температуры по сечению при МДТМО возможено только расчетными методами [3]. После окончания обработки о тепловом состоянии в момент начала охлаждения и в его процессе можно судить по характеру структуры готовой пружины.

Для исследуемых вариантов принимается:

-        диаметр прутка = 20 мм, диаметр оправки 192 мм;

-        окончание выдержки после индукционного нагрева (начало навивки) — равномерное распределение температуры по сечению — 1 000 С);

-        после навивки (контакт горячего витка с холодной оправкой из сталей 45, 20Х23Н18) при отсутствии охлаждения, время контакта 10 сек.;

-        охлаждение витков пружины на оправке в ванне с жидкостью (время начала охлаждения — 10 сек., после навивки витка на оправку, охлаждающая среда — полимерная закалочная жидкость (ПЗЖ), длительность охлаждения 15 сек.);

-        различные охлаждающие среды (вода, масло, ПЗЖ).

Изменение температуры на участках поверхности витка пружины (наружной и внутренней, контактирующей с оправкой) для рассматриваемых вариантов приведено на рис. 2–4.

Рис. 1. Схема процесса: 1 — пруток; 2 — индуктор; 3 — разделительное устройство; 4 — оправка; 5 — пружина; 6 — закалочная ванна

Рис. 2. Изменение температуры участков поверхности витка после навивки (оправка сталь 45): а — время контакта витка с оправкой; б — время охлаждения витка в ванне

Рис. 3. Изменение температуры участков поверхности витка после навивки (оправка сталь 20Х23Н18): а — время контакта витка с оправкой; б — время охлаждения витка в ванне

Рис. 4. Изменение температуры при охлаждении на оправке сталь 20Х23Н18, участок контакта пружина — оправка: вода (a = 4 кВт/мК), масло (a = 1,5 кВт/мК), ПЗЖ (a = 2 кВт/мК)

Из приведенных расчетных графических зависимостей видно, что

-        во время навивки и последеформационной выдержки температура прутка в зоне контакта с оправкой наиболее интенсивно снижается, материал оправки не оказывает влияния во время последеформационной выдержки на изменение температуры участка наружной поверхности витка пружины;

-        материал оправки оказывает влияние на степень охлаждения прилегающей зоны прутка и для исключения промежуточных превращений в материале витка пружины в зоне контакта его с оправкой следует применять оправки из высоколегированных сталей, например 20Х23Н18 (имеющих пониженный коэффициент теплопроводности по сравнению с конструкционной сталью 45).

С целью исследования изменения температуры прутка в разделительном устройстве перед навивкой было проведено ее конечно-элементное моделирование в ANSYS. При нахождении прутка в разделительном устройстве теплообмен возможен только излучением. В используемой конструкции устройства — расположение горизонтальное, длина устройства значительно превышает длину прутка — конвекционный обмен практически исключен. Результаты моделирования для прутков диаметром 20 и 30 мм при установившейся в разделительном устройстве температуре 500 0С представлены на рис. 5.

Из графиков видно:

— при температуре в устройстве 500 С температура наружной поверхности прутка достигает температуры, применяющейся при печном нагреве для закалки (860 0С) для прутка диаметром 20 мм через 36 сек., для прутка диаметром 30 мм через 56 сек.;

Рис. 5. Изменение температуры центра и поверхности прутка, находящегося в разделительном устройстве с температурой 500 С

Из графиков видно:

-        при температуре в устройстве 500 С температура наружной поверхности прутка достигает температуры, применяющейся при печном нагреве для закалки (860 0С) для прутка диаметром 20 мм через 36 сек., для прутка диаметром 30 мм через 56 сек.;

-        температурный градиент центр — поверхность после выдержки 30 сек. для диаметра 20 мм — 14 0С и для диаметра 30 мм — 24 С, после выдержки 60 сек. температурный градиент центр — поверхность для диаметра 20 мм.– 10 С, для диаметра 30 мм,– 19 С;

-        при нахождении прутка в устройстве свыше 5 сек. температурный градиент центр — поверхность снижается незначительно, изменение температуры в радиальном направлении подчиняется практически линейному закону.

Из приведенных данных можно сделать вывод:

1.                  Применение в качестве материала оправки высоколегированных сталей, например 20Х23Н18, уменьшает степень охлаждения внутренней поверхности витка пружины перед закалочным охлаждением.

2.                  Нахождение прутка, нагретого индукционно, в разделительном устройстве с температурой 500 С в течение 35 сек. не снижает температуру поверхности прутка ниже температуры нагрева применяемой при печной закалке.

3.                  Нахождение прутков диаметром 20 и 30 ммв разделительнм устройстве с температурой 500 С в течение 60 сек. приводит к значительному снижению (на 200 С) температуры наружной поверхности с градиентом между поверхностью и осью прутка 10–24 С, данный градиент формируется после 5 сек. нахождения прутка в разделительном устройстве.

Литература:

1.                  Шаврин О. И. Высокопрочные пружины для подвижного состава железнодорожных дорог. «Промышленный транспорт XXI век» № 3, 2012 с. 16–18.

2.                  Патент на изобретение RU 2377091 Способ изготовления крупногабаритных пружин из стали.

3.                  Скворцов А. Н. Твердотельное и имитационное моделирование прогрессивных технологических схем термомеханической обработки винтовым обжатием. Сб. ст. «Актуальные проблемы математики, механики, информатики». Ижевск:, 2010, -с. 144–150.

Обсуждение

Социальные комментарии Cackle