Библиографическое описание:

Бирюкова Н. М., Липай М. С., Соколов В. Г. Исследование сплавов на основе никеля, применяемых в электронном приборостроении [Текст] // Технические науки: проблемы и перспективы: материалы междунар. науч. конф. (г. Санкт-Петербург, март 2011 г.). — СПб.: Реноме, 2011. — С. 89-92.

Химическое осаждение никеля из водных растворов широко используется при решении различных технических задач в электронном приборостроении (металлизации корпусов, создании омических контактов к полупроводниковым структурам, барьерных, адгезионных, токопроводящих слоев и др.). Поэтому улучшение эксплуатационных характеристик (коррозионной стойкости, электропроводности, способности к пайке, микротвердости и др.), или придание таким никелевым покрытиям новых качеств представляет значительный практический интерес.

В данной статье представлены результаты исследования особенностей формирования и свойств сплавов на основе никеля и некоторых редкоземельных и тяжелых элементов (висмут, индий, лантан и их комбинаций), получаемых методом химического осаждения из никель-гипофосфитных растворов в присутствии солей этих металлов и органических веществ из класса полидисульфидов.

Анализ литературных данных показал, что существует много двойных, тройных сплавов на основе никеля, меди, кобальта и каталитически неактивных металлов – вольфрама, хрома, ниобия, и др., получаемых методом химического (ХОМ) и электрохимического осаждения, которые обладают рядом ценных свойств. [1, с. 60; 2, с. 117] Однако примеси таких каталитически неактивных металлов, вводимые в растворы ХОМ, оказывают сильное ингибирующее действие на скорость автокаталитического восстановления никеля и при концентрации более 10-4 моль/л полностью ингибируют процесс автокатализа. [2, с. 114]

Установлено, что одним из возможных путей снижения ингибирующего действия примесей тяжелых металлов является введение в растворы ХОМ добавок некоторых веществ из класса полидисульфидов (таблица 1) [3], синтезированных нами методом поликонденсации и идентифицированных различными физико-химическими методами (ИК-спектроскопия, ЭПР-спектроскопия, элементный анализ и др.

Введение полидисульфидов в растворы ХОNi позволяет увеличить концентрацию солей редкоземельных металлов (висмут, индий, лантан) до 1х10-2, 5х10-3, 1х10-4 моль/л соответственно; при этом скорость осаждения никелевого покрытия увеличивается в 2-2,5 раза.

В литературе имеются сведения о структуре и фазовом составе сплавов никель-фосфор с различным содержанием никеля и фосфора, а также сплавов Ni-P-Bi и Ni-P-Sn. Таблица 1

Структурные формулы полидисульфидов некоторых органических веществ

п/п

Формула

Название

1

n = 4 - 8

сульфосалициловой кислоты (2-гидрокси-5-сульфобензойной кислоты)

2

n = 3 - 5

сульфониловой кислоты(4-аминобензолсульфокислоты)

3

n = 5 - 8

3-амино-6 гидроксибензой-ной кислоты

4

n = 5 -8

галловой кислоты

Было показано, что структура пленок этих сплавов в значительной степени зависит от содержания в них фосфора и температуры термообработки, состава раствора химического никелирования и др. [4]

Соосаждение тяжелого металла с никелем можно рассматривать как частичный переход компонента раствора, присутствующего в малых концентрациях (микрокомпонента), в твердую фазу, образуемую в данной системе других компонентов, которые находятся в значительно больших концентрациях. Важнейшей особенностью соосаждения является то, что находящийся первоначально в гомогенной системе микрокомпонент не может в условиях проведения процесса (при понижении или повышении температуры, удалении растворителя, изменении рН и т.п.) образовать самостоятельно твердую фазу, а вовлекается в твердую фазу вместе с макрокомпонентом. Можно предположить, что включение микрокомпонента в твердую фазу происходит за счет образования твердого раствора никеля с микрокомпонентом (лантан, висмут, индий) и вовлечения его в формирующийся осадок (окклюзионное соосаждение), а также посредством адсорбции на гранях сросшихся микрочастиц и блоков текстуры осадка (внутреннее-адсорбционное соосаждение). Для подтверждения данного предположения нами было исследовано изменение фазового состава и микроструктура никелевых покрытий из сплавов на различных стадиях их роста.

Никелевые покрытия и сплавы на основе никеля осаждали из растворов, составы которых приведены в таблице 2, на кремниевую подложку после ее обезжиривания, травления в плавиковой кислоте и активирования в растворе хлорида палладия.

Таблица 2

Составы растворов химического никелирования

Название раствора

Компоненты

Концентрация, г/л

Ацетатный

NaH2PO2

20

CH3COONH4

10

(CH3COO)2Ni

15

Хлоридный

NiCl2

15

NH4Cl

35

NaH2PO2

20

CH3COONa

5

Температура растворов при осаждении покрытия составляла 60±2°C, а плотность загрузки - 1дм2/л. Легирующие металлы, вводили в виде нитратов в интервале концентраций от 5х10-6 – 5х10-3 моль/л. Стабилизирующие добавки класса полидисульфидов вводили в интервале концентраций 10-4 – 10-5 моль/л. Толщина исследуемых пленок составляла 0,1-0,3 мкм.

Изменение фазового состава покрытий, исходных и термообработанных до 500°C в атмосфере аргона в течение 30 -60 минут, контролировали с помощью дифрактометра HZG 4A (Карл Цейс Иена) с использованием медного и кобальтового антикатода с никелевым фильтром. Исследование морфологии покрытий проводили методом трансмиссионной микроскопии с помощью микроскопа УЭВМ -100 ЛМ.

С помощью атомно-эмиссионной спектроскопии (Plasma-100) установлено, что из никель-гипофосфитного раствора, который содержит ионы индия, лантана, висмута получаются тонкопленочные покрытия с содержанием от 2,9 ат.% до 6,2 ат.% индия (висмута, лантана).

Установлено, что свежеосажденные никелевые покрытия, полученные из растворов в присутствии вводимых добавок солей тяжелого металла, рентгеноаморфны и характеризуются наличием широкого гало в области 2Q = 38-57° , что свидетельствует об образовании твердого раствора, например, индия или висмута, в никеле. В процессе термообработки до 250-270°C степень кристалличности практически не изменяется. Размытый пик на спектре DSC в интервале температур 250-270°C, по-видимому, соответствует удалению из покрытия водорода, адсорбированного на границах зерен в местах структурных несовершенств покрытия. При дальнейшем повышении температуры (≥ 350°C), в сплаве никель-фосфор происходит перераспределение атомов в решетке твердого раствора, связанное с движение вакансий. Этот процесс способствует инициированию распада твердого раствора с образованием новых фаз – интерметаллических соединений. Выделение интерметаллического соединения (по данным рентгенофазового анализа Ni3P2, Ni3P, Ni2P) происходит в интервале температур 320-350°C и сопровождается экзотермическим эффектом. Для пленок, содержащих индий, выделение фазы фосфитов индия и никеля начинается с 280 °C, однако рефлексы уширены и имеют небольшую интенсивность. Степень кристаллизации фосфидов никеля Ni 3P2 и индия InP повышается с увеличением температуры до 340°C, о чем свидетельствует увеличение числа наблюдаемых рефлексов, повышение их интенсивности и уменьшение их полуширины. При такой температуре появляются фазы фосфидов металлов InP, LaР и BiP. Прогрев при 340°C приводит к образованию фазы металлического индия. Выделение фаз металлических висмута и лантана при аналогичной обработке не наблюдается. Повышение температуры прогрева до 500°C приводит к углублению процессов кристаллизации.

Изменение фазового состава химически осажденных сплавов на основе никеля, легированного тяжелыми металлами, соответственно влияет на физико-химические свойства осаждаемых покрытий и, прежде всего, на способность к пайке, адгезионную прочность и др. Следует отметить, что адгезионная прочность покрытий, легированных тяжелыми металлами после термической обработки превышает 200 Н/м.

Испытания никелевых покрытий на коррозионную устойчивость в климатической камере по методу погружения и солевого тумана показали, что никель-фосфорное покрытие уступает по коррозионным свойствам, покрытиям, легированным тяжелыми металлами (таблица 3).

Таблица 3

Коррозионная стойкость и способность к пайке никелевых покрытий, содержащих примеси висмута и лантана

Исследуемый параметр

Хлоридный раствор

Ацетатный раствор

Суммарная площадь коррозионных очагов S, %

95

14-16

9-12

75

8

14-16

Способность к пайке, Кр- коэффициент растекания припоя, %

0,6-0,7

1,21

2,2-2,4

0,6

0,8

2,1-2,3

Состав сплава

Ni-P

Ni-P-Bi

Ni-P-La

Ni-P

Ni-P-Bi

Ni-P-La

Примечание: в качестве флюса использовали спиртовой раствор канифоли.

При этом замечено, что после первого цикла коррозионных испытаний в никель-фосфорном покрытии образуются множественные очаги коррозии, а в случае легированных покрытий такой коррозионной картины не наблюдается даже после двух и более циклов испытаний. Следует отметить, что наилучшие результаты по коррозионной стойкости были получены на никелевых покрытиях, легированных лантаном.

Результаты электронно-микроскопического исследования поверхности никелевых покрытий, легированных висмутом, индием и лантаном показало, что присутствие добавок тяжелых металлов приводит к получению мелкокристаллических осадков, состоящих из близких по размерам частиц размером 20-30 нм и средней концентрацией их до 2-3х105. Согласно литературным данным, [5] такие покрытия, как правило, имеют большую площадь контакта с подложкой, что способствует росту адгезионной прочности пленок. Возможно значительное изменение эксплуатационных характеристик в сторону улучшения, а также появление нового качества покрытий, легированных указанными выше элементами, связано не только с их микроструктурой, но и с изменением характера взаимодействия между частицами за счет присутствия указанных примесей на границах частиц и формирующихся из них зерен никеля.


Литература:

1. Мелащенко Н.Ф. Гальванические покрытия диэлектриков: Справочник / Н.Ф. Мелащенко. – Минск : Беларусь, 1987. – 176 с.

2. Химическое осаждение металлов из водных растворов / В.В. Свиридов [и др.] ; под общ. ред. В.В. Свиридова. – Минск: «Университетское», 1987. – 270 с.

3. С 23 С 18/36, SU № 1813793 А 1 от 11.10.1992 г., Раствор для химического осаждения никель-фосфорного покрытия, Н.М. Бирюкова, В.П. Бобровская, А.К. Рахманов, Лосев Ю.П., И.Л. Петрова.

4. Н.М. Бирюкова, В.Г. Соколов, Легирование химически осажденных никелевых сплавов тяжелыми металлами, Тез. Доклада на II конференции «НОМАТЕХ-96», Минск, 1996, ч.2,с.110.

5. Н.М. Бирюкова, В.Г. Соколов, В.П. Бобровская // В кн.: Новые материалы и технологии: Тез. Доклада научно-техническая конференция, Минск, 1994, с. 140.

Обсуждение

Социальные комментарии Cackle