Библиографическое описание:

Тюфанова А. А. О возможности применения системного подхода к проблеме управления движением судов [Текст] // Технические науки: теория и практика: материалы III Междунар. науч. конф. (г. Чита, апрель 2016 г.). — Чита: Издательство Молодой ученый, 2016. — С. 118-121.



Рассмотрен процесс движения судов в зоне обслуживания системы управления движением судов с точки зрения системного анализа.

Ключевые слова: судопоток, судно, система, водный путь.

Методы управления движением судов остаются наименее исследованными в теории судопотока. В этом случае наиболее перспективной следует считать методологию системного анализа. Термин "система" имеет множество определений, но в рассматриваемом контексте под системой понимается "множество элементов" вместе со связями между элементами и между их признаками. Элементы — неделимые части или компоненты системы, определяющие ее состав [1]. При необходимости вводится иерархия подсистем. Признаки отражают самые разнообразные свойства элементов и подсистем, а связи объединяют систему в единое целое, придавая ей два таких важных макроскопических качества, как обособленность и целостность. В сущности, система становится таковой лишь благодаря наличию многих видов связи между подсистемами, между элементами и между признаками подсистем и элементов. Не раскрывая всего многообразия связей, выделим их в три основные группы:

 характеристические связи, определяющие соотношения между признаками подсистем и элементов, например, зависимость между скоростью и интенсивностью судопотока;

 информационные связи, определяющие пути передачи информации внутри системы;

 управляющие (функциональные) связи или воздействия, генерируемые человеком для достижения какой-либо частной цели.

Исходя из этих общих положений, процесс движения судов в зоне обслуживания системы управления движением судов (СУДС) можно рассматривать как функционирование сложной (большой) системы, состоящей из трех систем "водный путь — судопоток — СУДС".

В принципе, система "водный путь" аналогично понятию "естественное окружение", применяемому в системном анализе. Однако в данном случае целесообразно использовать именно понятие "система", поскольку элементы водного пути имеют характеристические, информационные и управляющие связи с другими системами, формирующими сложную систему, которая не просто существует в данном окружении, но и функционирует с учетом признаком элементов водного пути [2].

Среди элементов системы "водный путь" можно выделить акваторию (признаки: размеры, форма, глубины), навигационную обстановку (наличие и характеристики средств навигационного обеспечения, естественные ориентиры), гидрометеорологические условия (наличие течения, ветра, волнения). Особо следует отметить, что система "водный путь" почти всегда имеет общую с СУДС подсистему в виде схемы движения, включающей в себя также такие элементы, как фарватеры, зоны и линии разделения движения, специальные районы плавания. Такие элементы, формируя часть топологической структуры системы "водный путь", являются первичными элементами СУДС, которые определяют пространственное распределение судопотоков, выбор скорости движения, т. е. в сущности, оказывают на суда управляющее воздействия. Структурирование системы "водный путь" и определение признаков и связей между ее элементами особых трудностей не вызывает.

Второй составляющей данной сложной системы, с которой связаны основные цели системного анализа, является система "судопоток". Состав этой подсистемы однороден: он включает в себя лишь суда, хотя спектр признаков судов весьма широк как по количественному, так и по качественному разнообразию. Особенность признаков судов заключается в том, что им приписывается различный характер в зависимости от подхода: макроскопического или микроскопического. Например, техническая скорость при микроскопическом подходе, когда рассматривается конкретное судно в отдельности, имеет строго детерминистическое определение, т. е., она функционально зависит от размеров и формы корпуса судна, мощности главного двигателя, загрузки и т.п. Однако при макроскопическом подходе, когда речь идет о системе "судопоток" в целом, техническая скорость любого судна — это случайная величина, которая задается некоторой функцией распределения. Иногда для изучения проблемы на более высоком уровне целесообразно судно представлять в виде подсистемы "судоводитель — средства управления — судно как объект управления".

Судопотоку присущи также интегральные признаки, которыми не обладают отдельные суда: интенсивность, плотность и средняя скорость. Именно целенаправленное изменение этих признаков преследуется при воздействии на суда со стороны СУДС.

Характерной особенностью наблюдаемого судопотока в портах является то, что с большей вероятностью в течение некоторого заданного промежутка времени в порт поступят все суда, приход которых ожидается для погрузки или выгрузки определенного вида груза, и практически с нулевой вероятностью поступит большее, чем ожидается. Исходя из этого определяющего условия, попытаемся построить модель управляемого судопотока [1].

Пусть, в порту на интервале (О, Т) планируется N≥1 судозаходов (для погрузки или выгрузки одного какого-либо рода груза). Подход судов в порт предполагается случайным, причем интервалы между любыми двумя соседними судозаходами считаются случайными величинами, подчиненными одному и тому же закону распределения:

А(t), A(+0)<1, А(t), A(+0)<1,

.

Основными вероятностными характеристиками описанного потока наряду с функцией распределения (ф.р.) А(t) служит распределение вероятностей числа поступивших в интервале (О, Т) судов [3]:

и ф.р. случайного промежутка времени до наступления N-ого судозахода, которое обозначим ξN.

Введенный случайный поток, определенный для 0 ≤ t ≤+ ∞, будем называть ограниченным рекуррентным потоком (ОРП).

Вероятности πi(t) легко находятся с помощью методов теории восстановления. Пусть процесс поступления судов начинается в момент t=0.

где А(i)(t)i-кратная свертка ф.р. А(t) с собой; А(0)(t)=0.

Нетрудно также убедиться, что Р {ξN < t} = πN(t).

Для решения рассматриваемой задачи кажется естественным использовать модель так называемого потока Бернулли, для которого:

0iN, 0tτ.

Однако то обстоятельство, что эта модель предполагает с вероятностью единица приход в промежутке [O,T] точно N судов, ограничивает возможность ее использования для описания потока морских судов. На практике вероятность упомянутого события хотя и близка к единице, но все же отлична от нее. Отметим попутно, что поток Бернулли не является ОРП, так как в этом потоке интервалы между соседними наступлениями событий статистически зависимы между собой, причем время до наступления каждого из N событий распределено равномерно в промежутке [O,T] и моменты их наступлений совершенно между собой не согласованы.

Довольно часто на практике приходится сталкиваться с проблемой наложения (или суперпозиций) нескольких потоков судов. Вообще говоря, результирующий поток имеет значительно более сложную структуру, чем составляющие потоки, если последние достаточно просты. Хорошо известно, к примеру, что поток, образованный наложением любого конечного числа m>1 независимых простейших потоков с параметрами λ1, …, λm, также является простейшим потоком с параметрами λ1+…+ λm [3].

Ограниченные пуассоновские потоки аналогичным свойством уже не обладают.

Мы рассмотрели несколько упрощенную ситуацию, при которой в интервале (О,Т) могли поступать только суда, включенные в план этого периода. Приведенная модель судопотока является достаточно правдоподобной только на промежутке, поскольку на следующем плановом промежутке будут поступать уже другие суда и с положительной вероятностью возможно наложение потока судов, не поступивших в первом интервале (из числа запланированных), и нового потока судов, приход которых запланирован во втором интервале. Новый поток судов характеризуется другой функцией распределения А(t) и другим значением N. Поэтому возникает необходимость в изучении потока, образованного наложением потоков судов на двух соседних плановых промежутках. В реальных условиях всегда достаточно рассматривать эффект наложения судопотоков только на двух смежных плановых промежутках. Обычно число судов "переходящих" из первого промежутка на второй не превышает трех — четырех [2].

Наиболее сложной в структурном отношении в рассматриваемой сложной системе является СУДС. В структурно-функциональном отношении СУДС представляется тремя основными подсистемами: "персонал", "технические средства" и "схема движения". При изучении элементов этих подсистем, их признаков и связей возникают наиболее сложные проблемы, связанные с организационными, техническими, технологическими, психофизиологическими и социально-экономическими аспектами.

Моделирование сложной системы преследует несколько целей, каждая из которых может быть выражена некоторыми критериями, причем такие критерии не всегда согласуются между собой и противоречивы. В итоге можно сформировать или интегральный (обобщенный) критерий или систему критериев, которая бы являлась основой для выбора оптимального (по данной системе критериев) варианта модели системы из нескольких альтернатив. Так, применительно к системе "водный путь — судопоток — СУДС" интегральный критерий может соответствовать такой цели, как "достижение заданного уровня безопасности движения судов при минимальных затратах".

Общий подход к принятию решения может быть сведен к следующему:

 имеется некоторый набор альтернатив (вариантов) модели системы А, причем каждая альтернатива характеризуется совокупностью интегральных признаков n подсистем ain, где n — количество подсистем, i — количество интегральных признаков;

 имеется совокупность критериев , отражающих количественно множество признаков подсистем, т. е., каждая альтернатива характеризуется вектором ;

 необходимо принять решение о выборе одной из альтернатив или по одному критерию (простое решение) или по совокупности критериев (сложное решение).

Эта задача сводится к нахождению оператора (отображения) φ, который каждому вектору ставит в соответствие действительное число , определяющее степень предпочтительности выбранного варианта (здесь φ — интегральный критерий).

Таким образом, проблему безопасного и эффективного управления движением судов в зонах действия СУДС целесообразно решать на основе методологии системного анализа с привлечением математического аппарата исследования операций.

Литература:

  1. Каштанов, В.А. Теория надежности сложных систем/В.А. Каштанов, А.И. Медведев/– М.:ФИЗМАТЛИТ, 2010. — 608 с.
  2. Лентарев, А. А. Морские районы систем обеспечения безопасности мореплавания// Владивосток: Морской государственный университет, 2004. — 114 с.
  3. Тюфанова, А.А. Роль математического моделирования управляемого потока судов в безопасности мореплавания в портовых водах// Сборник научных трудов, выпуск № 12. Новороссийск РИО "МГА им.адм. Ф.Ф.Ушакова", 2007. — с.23-25
Основные термины (генерируются автоматически): водный путь, управления движением судов, движения судов, системного анализа, процесс движения судов, потока судов, признаков судов, потоков судов, системы управления движением, признаками подсистем, зоне обслуживания системы, обслуживания системы управления, Особенность признаков судов, спектр признаков судов, первичными элементами СУДС, наложением потоков судов, управляемого потока судов, действия СУДС целесообразно, наложение потока судов, потока морских судов.

Обсуждение

Социальные комментарии Cackle