Библиографическое описание:

Арискин М. В., Секачев В. А., Сорокин Г. Е., Николаев А. П., Бердников А. Г. Результаты технической экспертизы о причинах разрушения узла крепления проушины гидроцилиндра подъёма второго колена стрелы, произошедшего в г. Нижний Ломов Пензенской области // Молодой ученый. — 2015. — №17. — С. 101-104.

Целью экспертизы была оценка причин возникновения разрушений опорного узла крепления гидроцилиндра подъёма 2-го колена стрелы автомобильного гидроподъёмника ВС—28К, в соответствии с требованиям нормативно-технической документации Ростехнадзора России и принадлежащего организации г. Нижний Ломов.

Было произведено освидетельствование узла крепления гидроцилиндра подъёма 2-го колена стрелы и описаны разрушения:

Отрыв по основному металлу накладки усиления короба 1-го колена стрелы шириной — 330 мм; длиной — 475 мм. Рис. 1.

Толщина разрушенной накладки составляет 4,0 ± 0,03 мм. Накладка усиления короба выполнена из двух Г-образных заготовок, которые обварены по периметру: по оси симметрии 1-го колена стрелы выполнен общий сварной шов. Этот сварной шов вырван вместе с основным металлом короба 1-го колена стрелы, при этом края вырванного металла имеют волнообразный профиль (Рис. 3), который указывает на недостаточную (малую) жёсткость крепления основания кронштейна (проушин) для фиксации (удержания) гидроцилиндра подъёма 2-го колена стрелы.

Рис. 1. Разрушенная накладка

 

В процессе эксплуатации при подъёме и удержания 2-го колена стрелы в заданном положении из-за ветровой нагрузки, сил инерции при повороте стрелы, а также от перемещения людей в люльке возникали возвратно-колебательные перемещения (деформации) в области общего сварного шва усиливающих накладок (на это указывает волнообразный край разрыва основного металла короба 1-го колена стрелы), величина этих перемещений (деформаций) изначально оказалась больше допускаемых величин, т. к. жёсткость узла крепления основания кронштейна оказалась недостаточной; общая толщина основания под кронштейн и усиливающей накладки при измерении штангенциркулем оказалась 13 мм (Рис. 3). Механические испытания образцов материала усиливающей накладки показали снижение пластичности материала 2,5…2,8 раза, что привело к возникновению усталостных микро- и макротрещин, их накоплению и развитию, что, в свою очередь, привело к внезапному разрушению опорного узла крепления гидроцилиндра.

Рис. 2. Края вырванного металла

 

При визуальном осмотре, который периодически проводился при технических освидетельствованиях подъёмника визуальное определение наличия трещин в общем сварном шве невозможно, т. к. этот шов полностью закрыт основанием под кронштейн крепления гидроцилиндра. Использование методов неразрушающего контроля в данном случае также проблематично. Сварной шов крепления основания кронштейна (толщиной 10 мм) к усиливающей накладке не разрушен.

Рис. 3. Уголок по верхней и нижней поверхности короба

 

Согласно заводской технологии изготовления 1-го колена стрелы на участке установки основания под кронштейн крепления гидроцилиндра подъёма 2-го колена стрелы, внутри короба установлены две диафрагмы из листового металла толщиной 4 мм на расстоянии 350 мм друг от друга, а также приварен уголок по верхней и нижней поверхности короба.

По результатам визуального осмотра и характера разрушений элементов опорного узла крепления гидроцилиндра можно сделать вывод о том, что одна их диафрагм выполнила своё назначение и не позволила вырвать металл 1-го колена стрелы по периметру основания кронштейна (рис. 1..3), несмотря на имеющиеся разрывы металла, усиливающий уголок при этом практически не воспринимал действующие нагрузки, т. к. сварные швы выполнены с нарушениями технологии сварки.

По результатам осмотра сделаны следующие выводы:

-          Визуальный осмотр, характер разрушений элементов опорного узла крепления гидроцилиндра и металлографическое исследование показывают недостаточную жёсткость конструкции, что приводит к возникновению усталостных повреждений металла в процессе эксплуатации и «внезапному» разрушению конструкции при штатном использовании подъёмника.

-          Нарушение технологии выполнения сварных швов крепления усиливающего элемента (уголка) поверхности короба, к которому привариваются усиливающие накладки и основание кронштейна крепления гидроцилиндра, привело к тому, что элемент усиления выполнял свои функции только частично и не смог предотвратить отрыв по основному металлу общего сварного шва накладок усиления. Непровары в начале и в конце общего сварного шва являлись зоной концентрации напряжений от действующих нагрузок, где возможно возникновение и развитие трещин по мере снижения пластичности материала короба.

-          Вариант реконструкции завода-изготовителя опорного узла крепления гидроцилиндра путем выполнения проточки и дополнительного сварного шва на расстоянии 15 мм от сварного шва крепления основания кронштейна позволяет снизить напряжения в наиболее нагруженном шве основания кронштейна, но не увеличивает жёсткость конструкции (чертежи ЭС-855.000).

По условиям эксплуатации опорного узла крепления гидроцилиндра подъёма 2-го колена стрелы критерий работоспособности по жёсткости является основным расчётом для элементов конструкции этого узла. Расчеты таких узлов можно вести методами конечных элементов [1,2,3,4,5,6,7,8,9,10,11,12,13,14], что в свою очередь даст наиболее точную оценку возникновения концентратов напряжений, которые в свою очередь могут привести к аварийным ситуациям. Использование моделирования поможет выявить опасные, которые должны быть подвергнуты периодическим осмотрам, для недопущения аварийных ситуаций.

 

Литература:

 

1.         Арискин М. В., Гарькин И. Н. Теоретические исследования напряжено-деформируемого состояния в составной балке // Молодой ученый. — 2014. — № 11. — С. 37–40.

2.         Арискин М.В Совершенствование клееметаллических соединений деревянных конструкций с применением стальных шайб// диссертация на соискание учёной степени кандидата технических наук/Пензенский государственный университет архитектуры и строительства, Пенза 2011

3.         Арискин М. В., Гуляев Д. В., Агеева И. Ю., Гарькин И.Н Теоретические исследования напряженно-деформированного состояния элементов соединений на вклеенных шайбах [Текст] // Молодой ученый. — 2013. — № 2. — С. 27–31.

4.         Арискин М. В., Гуляев Д. В., Агеева И. Ю. Изготовление соединений на вклеенных стальных шайбах / Альманах современной науки и образования. 2013. № 6 (73). С. 13–15.

5.         Арискин М. В., Д. В. Гуляев, И. Ю. Агеева, Гарькин И.Н Применение многорядных соединений в деревянных конструкциях в практике строительства [Текст] // Молодой ученый. — 2013. — № 5. — С. 35–38.

6.         Арискин М. В., Гуляев Д. В., Гарькин И. Н., Родина Е. В. Экономическая эффективность проектирования в комплексе Аllplan по сравнению с существующими CAD-системами [Текст] // Молодой ученый. — 2013. — № 5. — С. 32–35.

7.         Арискин М. В. Современные тенденции развития проектирования в строительстве [Текст] / М. В. Арискин [и др.] // Молодой ученый. — 2012. — № 10. — С. 31–33.

8.         Арискин М. В. Моделирование многорядных соединений на центровых вклеенных кольцевых шпонках /Арискин М. В., Куценко Е. В.//Новый университет. Серия: Технические науки. 2013. № 10 (20). С. 16–22.

9.         Арискин М. В. Теоретические Исследования Напряжено-Деформируемого Состояния В Составной Балке /Арискин М. В., Гарькин И. Н.//Молодой ученый. 2014. № 11. С. 37–40.

10.     Арискин М. В. Использования стеклофибробетона в строительстве /Арискин М. В., Кислякова Е. С.//Молодой ученый. 2014. № 8. С. 128–132.

11.     Применение Вклеенных Стальных Шайб В Стыковых Соединениях Элементов Деревянных Конструкций/Арискин М. В., Никишина О. В.//Молодой ученый. 2013. № 11. С. 58–61.

12.     Арискин М. В. Исследование напряженно-деформированного состояния гнутых карнизных узлов рам /Арискин М. В., Гуляев Д. В., Агеева И. Ю.//Молодой ученый. 2013. № 3. С. 19–25.

13.     Арискин М. В. Анализ недостатков и предложения по совершенствованию соединений на шайбах и шпонках /Арискин М. В., Никишина О. В.// Новый университет. Серия: Технические науки. 2013. № 8–9 (18–19). С. 50–52.

14.     Арискин М. В. Методика построения конечно-элементной модели /Арискин М. В., Родина Е. В., Гуляев Д. В.//Молодой ученый. 2013. № 9. С. 34–36.

Обсуждение

Социальные комментарии Cackle