Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Электронное оснащение метеорологического беспилотного летательного аппарата

Научный руководитель
Физика
10.11.2024
91
Поделиться
Библиографическое описание
Наумов, И. Н. Электронное оснащение метеорологического беспилотного летательного аппарата / И. Н. Наумов, Р. В. Шибеко. — Текст : непосредственный // Юный ученый. — 2024. — № 11 (85). — С. 46-50. — URL: https://moluch.ru/young/archive/85/4675/.


В статье рассмотрены электронные компоненты для метеорологического БПЛА, приведены их назначения и некоторые технические характеристики.

Ключевые слова: БПЛА, датчик, микроконтроллер, интерфейс, погода, модуль.

Прогнозирование погоды очень важно на сегодняшний день. Погода вносит коррективы в работу многих областей деятельности человека (и это не только транспорт). Ущерб от природных катаклизмов с развитием и удорожанием технологий год от года растет. Исходя из этого, требования к точности прогнозов повышаются.

Для повышения качества прогнозов следует увеличивать количество точек фиксации метеоданных. Строит и обслуживать метеостанции в большом количестве, тем более в труднодоступных районах, экономически дорого. К тому же необходимо получать данные с разных высот. Раньше такие данные получали с помощью метеозондов, которые дрейфуют где-то вдали от метеостанции, обратно не возвращаются, и, достигая определенной высоты, шары лопаются и приборы падают на землю. Беспилотники имеют ключевое преимущество перед метеозондами, поскольку ими можно управлять на малых и больших высотах, с помощью них можно увеличить частоту и расширить зону измерений.

Ниже представлены электронные компоненты для метеорологического БПЛА исключая системы энергопитания, управления двигателями и передача видео (при необходимости). Микроконтроллер с достаточными функциональными возможностями может взять управление/обслуживание всех компонентов БПЛА в том числе энергопитание и управление двигателями. Как правило видео передается отдельным каналом.

Zigbee-модуль . Технология связи Zigbee обладает определенными преимуществами: уровень безопасности соединения; большие расстояния передачи данных; низкое энергопотребление и возможность работы в условиях сильного помехозащищенного радиошума.

Модуль беспроводной последовательной связи DL-20 TTL ZigBee представляет собой полнодуплексный беспроводной модуль передачи данных с портом UART, работающий в общедоступном диапазоне частот 2400–2450 МГц. Модуль использует чип CC2530. Легко подключается к микроконтроллеру.

Модуль DL-20 TTL ZigBee

Рис. 1. Модуль DL-20 TTL ZigBee

СВЧ-усилитель. Для увеличения расстояния связи дрона с пользователем можно применить СВЧ-усилитель.HMC451LP3E — это эффективный усилительсредней мощности на арсенид-галлиевых полупроводниковых структурах. Работая в диапазоне от 5 до 18 ГГц, усилитель обеспечивает 18 дБ усиления. Соответствует RoHS.

Внешний вид СВЧ-модуля на HMC451LP3E

Рис. 2. Внешний вид СВЧ-модуля на HMC451LP3E

Усилитель не требует внешних компонентов и имеет один номинал энергопитания в +5 В.

Датчик атмосферного давления SMD500 . Является миниатюрным датчиком с диапазоном измерения атмосферного давления 300–1100 гПа (225–825 мм рт. ст.). При разработке датчиков использована APSM технология (Advanced Porous Silicon Membrane), которая позволяет добиться более компактных габаритных размеров по сравнению с обычными технологиями производства датчиков давления.

Датчик SMD500

Рис. 3. Датчик SMD500

Двухпроводной интерфейс I2C делает подключение датчика к микроконтроллеру быстрым и удобным.

Датчики SMD500 разработаны по пьезорезистивной технологии, они имеют малые электромагнитные помехи, высокую точность и линейность, а также долгий срок службы.

Подключение датчика к микроконтроллеру

Рис. 4. Подключение датчика к микроконтроллеру

Датчик влажности и температуры HIH-6130. В основе датчика лежит емкостный полимерный сенсор, не чувствительный к конденсации влаги, пыли, грязи и многим химическим веществам. Диапазон измерения влажности от 0 до 100 %RH, а температуры от -25 до 85 °C с точностью не хуже ± 5 %. Имеются модификации как с интерфейсом I2C, так и с интерфейсом SPI. Подключение по шине I2C аналогично показанному на рисунке 4.

Датчик HIH-6130

Рис. 5. Датчик HIH-6130

Датчик магнитного поля MMC5603NJ. Однокристальный интегрированный трехосевой датчик имеет миниатюрные размеры0.8x0.8x0.4 мм. Устройство можно подключать напрямую к микроконтроллеру по интерфейсам I2C/I3C, устраняя необходимость в АЦП или в схемах синхронизации.

Датчик MMC5603NJ

Рис. 6. Датчик MMC5603NJ

Датчик измеряет магнитное поле в диапазоне полной шкалы ±30 Гс (G) с разрешением до 0,0625 мГс на LSB в 20-битном режиме работы. Температурный дрейф MMC5603NJ составляет всего ±0,01 мкТл/℃, что намного ниже, чем у аналогичных продуктов конкурентов. Таким образом, MMC5603NJ может поддерживать постоянную точность измерений и стабильную и надежную работу в различных суровых условиях от -40 до +50°.

Аннемометр. CG-Anem — универсальный анемометр модульного формфактора. В качестве чувствительного элемента в модуле используется NTC- термисторы, применяемые в широком диапазоне промышленных устройств.

Датчик скорости потока воздуха CG-Anem

Рис. 7. Датчик скорости потока воздуха CG-Anem

Устройство поддерживает измерение и расчет скорости воздушного потока с использованием трех различных диапазонов нагрева, в зависимости от скорости потока. Также модуль измеряет температуру воздуха. Измерение температуры, алгоритмы расчета и передача данных по I2C с частотой работы шины до 200 кГц реализованы на установленном на плате микроконтроллере Atmega8. В целях повышения энергоэффективности модуль может быть переведен в режим глубокого сна. Обеспечена возможность получать по I2C текущее состояние устройства, что позволяет определить неисправность при работе модуля.

Расчет скорости потока выполняется путем преобразования разности температур горячего и холодного концов термоанемометра. Для расчета температуры окружающего воздуха применяется уравнение Стейнхарта — Харта:

,

где T — температура в кельвинах;

R — сопротивление терморезистора;

A,B,C — коэффициенты Харта.

При установке датчика на БПЛА следует предпринять меры по устранению воздушного потока от винтов на сам датчик (экранирование винтов, помещение датчика в трубу).

Модуль GNNS . С выходом спутниковой навигации на потребительский рынок стало актуальным использование нескольких систем в одном устройстве. UM620N — это двухчастотный навигационный модуль GNSS, разработанный компанией Unicore Communications для применения в автотранспорте, дронах, робототехнике, поддерживает мультисистемное двухчастотное совместное позиционирование или односистемное автономное, обеспечивая высокую точность позиционирования даже в сложных условиях, таких как многолучевое окружение, или погодные плохие условия, приводящие, например, к сильной рефракции радиосигналов. Модуль имеет размеры 16.0 x 12.2 x 2.4 мм.

Модуль GNNS UM620N

Рис. 8. Модуль GNNS UM620N

Для подключения к микроконтроллеру имеются несколько наиболее применяемых портов.

Структура модуля GNNS UM620N.

Рис. 9. Структура модуля GNNS UM620N.

Литература:

  1. Датчики: справочное пособие / В. М. Шарапов, Е. С. Полищук, Н. Д. Кошевой, Г. Г. Ишанин. — Москва: Техносфера, 2012. — 624 с.
  2. Шаошань, Л. Разработка беспилотных транспортных средств / Л. Шаошань; научный редактор В. С. Яценков; перевод с английского П. М. Бомбаковой. — Москва: ДМК Пресс, 2021. — 246 с.
  3. Беспилотные летательные аппараты: учебное пособие / С. Н. Денисенко, А. Ю. Смирнов, А. М. Хрусталев, И. Г. Штеренберг. — Санкт-Петербург: СПбГТИ (ТУ), 2023. — 115 с.
  4. Алла Кулюшина, А. Н. Беспилотники и погода / а.н. кулюшина // Компания « MicroStep-MIS »: сайт . URL: https://www.microstep-mis.ru/web/about-us?tab=Cooperation (дата обращения: 25.10.2024). — Режим доступа: свободный.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
БПЛА
датчик
микроконтроллер
интерфейс
погода
модуль

Молодой учёный