Для формирования профессиональных компетенций учащихся СПО необходимо владеть рядом учебных дисциплин, имеющих общепрофессиональное значение. Очень важная роль в этом принадлежит математике как универсальному междисциплинарному языку для изучения объектов и процессов. Наряду с формированием предметных знаний и умений у учащихся должны формироваться умения и навыки использования полученных знаний в разнообразных ситуациях, близких к реальным. Одним из основных средств, применение которых создает хорошие условия для достижения данной цели, является решение задач прикладной направленности.
Рассмотрим некоторые примеры решения прикладных задач с применением методов математического анализа.
Задача 1. Города A и B находятся на расстоянии a км и соединены прямой железной дорогой. Для перевозки грузов из города A в город C, отстоящий от железной дороги на b км, необходимо построить автомобильную дорогу, примыкающую к железной дороге (рисунок 1). К какой точке D следует провести шоссе, чтобы транспортировка грузов была наиболее экономичной, если стоимость перевозки 1 тонны груза на 1 км по железной дороге составляет v руб., а по автомобильной дороге — w руб..
Решение. Обозначим через x расстояние от города A до автомобильного съезда D.
Рис. 1
Отметим, что . Тогда длина участка ВD = a — x, а длина автомобильного участка СD пути определится по теореме Пифагора и будет равна
. (1)
Стоимость перевозки 1 тонны груза по железнодорожному участку AD будет равна


. (2)
Так как полученное выражение для полной стоимости является функцией расстояния х, то с целью исследования на экстремум найдём её производную
.
Из условия равенства нулю производной найдём значение х, в которой функция достигает экстремума
. (3)
Очевидно, что значение не является точкой экстремума, так как не удовлетворяет условию
. Следовательно, функция
достигает экстремума только в точке
. Исследование производной
при переходе через точку
показало, что в левой окрестности точки
производная отрицательна, а в правой окрестности — положительна. Следовательно, в точке
функция
принимает минимальное значение.
Анализ полученных результатов показывает, что полученное решение справедливо лишь при выполнении условия , то есть если удельные расходы по перевозке грузов по автомобильной дороге (участок CD) будут превышать удельные расходы при транспортировке железнодорожным путём (участок АD). Рассмотрим диапазон возможных значений, в котором может изменяться отношение
. С этой целью исследуем два предельных случая: 1) х = 0; 2) х = а.
В первом случае, когда х = 0, преобразовав полученное в (3) выражение для , и приравняв нулю, получим
. (4)
Это отношение (4) удельных расходов

Во втором случае, когда х = а, для отношения будем иметь:
. (5)
Очевидно, что на практике полученное отношение не может стремиться к бесконечности, а должно иметь конечное значение. Следовательно, оптимальная точка D автомобильного съезда, будет находиться в промежутке
.
Поставив полученное значение в (2), найдём минимальное значение полной стоимости транспортировки 1 тонны груза из пункта A в пункт C
Smin = . (6)
Задача 2. Капля с начальной массой падает под действием силы тяжести и равномерно испаряется, теряя в единицу времени массу
. Какую работу совершает сила тяжести капли за время падения до полного её испарения?
Решение. Пусть в начальный момент времени () масса капли равна
, а скорость её испарения равна
. Тогда закон изменения массы
капли во время движения можно записать в виде
. Из условия, что к концу движения капля испаряется полностью, то есть масса
, найдём время падения
до её полного испарения:
. (7)
Во всё время движения капля совершает свободное падение под действием переменной силы тяжести
(8)
Известно, что если материальная точка движется вдоль оси Ох под действием переменной силы, то работа А силы по перемещению точки из положения


. (9)
Так как движение совершается без начальной скорости, то в произвольный момент времени скорость капли определится по формуле . Тогда за время
капля пройдёт расстояние
. Подставив равенство (8) и полученное выражение для
в (9), и учтя, что в рассматриваемом случае
и
, получим
(Дж).
Приведённые примеры показывают важность математической компетенции учащегося, способствующей адекватному применению математики для решения профессиональных задач.
Литература:
- Богомолов Н. В., Самойленко П. И. Математика: учебник для ссузов. — 7 изд., стереотип. — М., 2010. — с. 395.
- Математика. Тренировочные тематические задания повышенной сложности для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов / сост.Г. И. Ковалёва, Т. И. Бузулина, О. Л. Безрукова, Ю. А. Розака — Волгоград: Учитель, 2007. — 494 с.