Обеспечение безопасности процесса переработки газового конденсата | Статья в журнале «Техника. Технологии. Инженерия»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Новые технические решения

Опубликовано в Техника. Технологии. Инженерия №1 (11) январь 2019 г.

Дата публикации: 24.10.2018

Статья просмотрена: 350 раз

Библиографическое описание:

Бакаленко, А. С. Обеспечение безопасности процесса переработки газового конденсата / А. С. Бакаленко, О. В. Шингаркина. — Текст : непосредственный // Техника. Технологии. Инженерия. — 2019. — № 1 (11). — С. 31-37. — URL: https://moluch.ru/th/8/archive/110/3655/ (дата обращения: 16.12.2024).



В статье рассмотрены возможные аварийные ситуации, которые могут возникнуть при переработке газового конденсата, их опознавательные признаки и оптимальные способы противоаварийной защиты. Для предотвращения данных аварийных ситуаций предложено использовать систему прогнозирования и оценки безопасности ОПО с использованием комплексной модели обеспечения безопасности.

Ключевые слова: газовый конденсат, стабилизация, аварийные ситуации, безопасность, опасный производственный объект, прогнозирование.

Key words: gas condensate, stabilization, emergencies, safety, hazardous production facilities prediction, forecasting.

Газоперерабатывающие предприятия относятся к промышленным объектам повышенной опасности и отличаются высокой аварийностью эксплуатируемых объектов, несовершенством систем управления технологическими процессами и противоаварийной защиты, износа оборудования.

Анализ характера и причин аварий в данной отрасли [1] показывает, что в последнее десятилетие большинство из них (около 95 %) связано со взрывами: 54 % в аппаратуре, 46 % в производственных зданиях и на открытых технологических площадках. Статистика показывает, что из общего количества взрывов в 42,5 % случаев происходят взрывы сжиженных углеводородных газов. При залповых выбросах горючих 7 % не сопровождаются воспламенением, 35 % завершаются взрывами, в 23 % случаев взрывы сочетаются с пожарами, 34 % сопровождаются только пожарами.

На основании анализа результатов технического расследования аварий на предприятиях отрасли [2] выявлены следующие основные причины и условия возникновения и развития аварий:

– пожаро-взрывоопасные свойства применяемого сырья, конечных и побочных продуктов;

– аппаратное оформление — наличие на установке аппаратов, находящихся под давлением, высокая плотность расположения оборудования, значительные объёмы взрывоопасных материалов, находящихся в аппаратах;

– ведение процесса при сравнительно высоких давлениях (до 1,6 МПа) и высоких температурах (до 250 ºС);

– выход параметров технологического процесса за критические значения изменения давления, температуры, уровня жидкости, состава сырья, дозы и скорости подачи сырья;

– нарушение герметичности оборудования;

– неисправность средств регулирования и противоаварийной защиты процессов;

– непрофессиональные и ошибочные действия обслуживающего персонала, в том числе при проведении сварочных и ремонтных работ, неудовлетворительная ревизия состояния оборудования и трубопроводов;

– нарушение правил технической эксплуатации, а также некомпетентность при принятии решений в экстремальных ситуациях;

– невыполнение на предприятиях графиков планово-предупредительного ремонта оборудования, некачественный монтаж или ремонт оборудования;

– вероятность появления источника воспламенения.

Процесс переработки газового конденсата является пожаро- и взрывоопасным в связи с тем, что он связан с проведением процесса ректификации при повышенных температурах и давлении, а его продуктами являются пары углеводородов, большинство из которых имеют низкую температуру вспышки и в результате взаимодействия с кислородом воздуха образуют смеси, взрывающуюся при наличии огня или искры.

Сущность процесса заключается в стабилизации конденсата с получением углеводородных газов, сжиженной пропан-бутановой фракции (ПБФ) и стабильного конденсата — газового конденсата, получаемого путем очистки нестабильного газового конденсата от примесей и выделения из него углеводородов С-С [3]. На рисунке 1 представлена схема одного из технологических блоков установки стабилизации конденсата.

Рис. 1. Схема технологического блока установки стабилизации конденсата: Т–101/1 — теплообменник, К–101/1 — ректификационная колонна, ВХ–101/1–3, ВХ–102/4– холодильники, Е-101/1 — емкость орошения, Н-101/1,2, H-102/1,2 — насосы

В ходе изучения эксплуатационной документации подобных объектов были выявлены возможные аварийные ситуации, которые могут возникнуть при осуществлении данного процесса:

– выход параметров процесса за предельно допустимые значения.

– разгерметизация оборудования через торцовые и сальниковые уплотнения, фланцевые соединения, разгерметизация колонной и емкостной аппаратуры, змеевиков печей.

– выброс продукта из разрушенных аппаратов, трубопроводов с образованием взрывоопасного облака

– пожар

– взрыв парогазовоздушной смеси

Ключевая роль в обеспечении безопасности от возможных аварий отводится системам противоаварийной защиты, позволяющим проводить постоянный мониторинг наиболее важных зон объекта, а в критических ситуациях выполнять необходимые действия для предотвращения серьезных последствий.

Система противоаварийной защиты является компонентом распределенной системы управления (РСУ), которая в свою очередь является компонентом автоматизированной системы управления технологическим процессом (АСУ ТП) опасного производственного объекта (ОПО).

Система противоаварийной защиты предназначена для предупреждения и предотвращения аварийных ситуаций, которые могут возникнуть во время технологических процессов как в результате влияния человеческого фактора, так и из-за сбоев в работе оборудования.

Она строится на специально сертифицированных для таких целей моделях программируемых контроллеров. Контроллеры имеют дублированную архитектуру, что в несколько раз повышает отказоустойчивость оборудования отвечающее за предотвращение аварийных ситуаций.

В случае возникновения опасности развития аварийной ситуации контроллеры противоаварийной защиты реализуют алгоритмы по предотвращению аварийных ситуаций в соответствии с правилами локализации аварийных, принятыми на предприятии.

Система противоаварийной защиты параллельно с основной системой автоматизированного управления следит за состояниями аварийных сигнальных датчиков. В случае срабатывания которых система ПАЗ разрывает управление задвижками и двигателями от основной автоматизированной системы управления, в результате чего они останавливаются или закрываются.

Не меньшую роль в обеспечении промышленной безопасности в нефтегазоперерабатывающей отрасли имеет прогнозирование возможных аварийных ситуаций с дальнейшим их предупреждением.

Современным способом решения данной задачи является внедрение системы прогнозирования и оценки безопасности опасного производственного объекта (ОПО) с использованием комплексной модели обеспечения безопасности [4]. На рисунке 2 представлена схема осуществления системы прогнозирования и оценки безопасности ОПО.

Данная система включает рабочую станцию оператора с программным обеспечением, позволяющим строить комплексную модель обеспечения безопасности, производить расчеты показателей безопасности, риска и эффективности, сервер, сеть передачи и сбора информации, контроллеры ввода-вывода информации, коммутатор, сервер АСУ ТП, подключенный к системе через локальную вычислительную сеть объединенной расчетной системы; инженерно-технические системы обеспечения безопасного функционирования объекта, подключенные через модули ввода-вывода, блок сбора и обработки информации по режимам функционирования и параметрам технологического процесса, блок сбора и обработки информации по показателям надежности функционирования элементов РСУ, АСУ ТП, ПАЗ, технологического оборудования, блок сбора и обработки информации по опасным составляющим объекта, авариям и аварийным инцидентам, база данных по проектным решениям, база данных по комплексной модели обеспечения безопасности; база данных по показателям надежности, база данных по опасным составляющим объекта, блок моделирования, расчетный блок, блок анализа и оценки результатов моделирования и расчета показателей; блок выработки альтернативных технических решений и блок принятия решений.

Рис. 2. Схема осуществления системы прогнозирования и оценки безопасности ОПО с использованием комплексной модели обеспечения безопасности

Данный способ относится к автоматизированным системам управления безопасностью опасного производственного объекта и может быть использован на всех этапах жизненного цикла объекта, а именно при проектировании, строительстве, эксплуатации и ликвидации опасного производственного объекта.

Система отличается тем, что анализ надежности, безопасности и эффективности функционирования опасного производственного объекта осуществляется с помощью общего логико-вероятностного метода (ОЛВМ). В блоках сбора и обработки информации обработка данных осуществляется с помощью единых алгоритмов, адаптированных к специфике конкретного опасного производственного объекта и с учетом имеющейся у проектировщика дополнительной информации о свойствах проектируемой системы опасного производственного объекта.

Техническим результатом изобретения является оценка состояния безопасности объекта на основе анализа расчетов показателей безопасности и риска и выработка рекомендаций по проведению мероприятий, направленных на снижение вероятности возникновения аварий и масштабов их последствий.

В результате прогнозирования и оценки показателей безопасности выбирается наиболее безопасный вариант проектных решений и утверждается комплексная модель обеспечения безопасности, которая будет сопровождать объект на последующих этапах жизненного цикла [4].

Таким образом, внедрение данной системы позволит минимизировать риск возникновения аварий на опасном производственном объекте, даст возможность своевременно выявить «слабые места» в обеспечении промышленной безопасности, а также провести необходимые мероприятия, направленные на предупреждение аварий и несчастных случаев.

Литература:

  1. Егоров А. Ф., Савицкая Т. В. Анализ риска, оценка последствий аварий и управление безопасностью химических, нефтеперерабатывающих и нефтехимических производств. — М.: КолосС, 2013. — 526 с.:
  2. Васильев П. П. Безопасность жизнедеятельности. М.: ЮНИТИ, 2003. –188 с.
  3. ГОСТ Р 54389–2011 Конденсат газовый стабильный. Технические условия
  4. Патент РФ № 2013135966/08, 30.07.2013 Ганченко Павел Владимирович, Ибадулаев Даниил Владиславович, Космичев Василий Павлович, Лузанов Виктор Федорович, Обломский Сергей Борисович, Степанов Илья Владимирович. Система прогнозирования и оценки безопасности опасного производственного объекта с использованием комплексной модели обеспечения безопасности//Патент Российской Федерации № 2549514
Основные термины (генерируются автоматически): газовый конденсат, комплексная модель обеспечения безопасности, оценка безопасности, ситуация, автоматизированная система управления, взрыв, жизненный цикл, промышленная безопасность, схема осуществления системы прогнозирования, технологический процесс.

Похожие статьи

Особенности развития аварийных ситуаций на мобильной установке подготовки нефти

В статье рассматриваются особенности развития аварийных ситуаций на мобильной установке подготовки нефти, рассмотрен процесс разгерметизации нефтегазосепаратора, определены направления для разработки профилактических мероприятий.

Оценка риска пожаров и взрывов на установке комплексной подготовки газов

Опасными производственными объектами являются газо- и нефтеперерабатывающие предприятия. На таких объектах приобретаются, перерабатываются, применяются грузы, которые в любой момент могут привести к аварийной ситуации. Во избежание аварий необходимо ...

Сценарии развития аварийных ситуаций на мобильной установке подготовки нефти и газа

В работе рассмотрены сценарии развития аварийных ситуаций на мобильной установке подготовки нефти и газа, определены виды оборудования, которые наиболее подвержены риску разгерметизации.

Исследование эффективности работы установок низкотемпературной сепарации

Определение оптимальных технологических режимов, а также повышение эффективности процесса проектирования технологических схем на нефтяных и газовых месторождениях являются одними из важнейших факторов, влияющие на научно-технический прогресс в нефте-...

Риск-ориентированный подход к обеспечению безопасности резервуара при строительстве завода по производству сжиженного природного газа на этапе пусконаладочных работ

В работе рассмотрен подход для разработки методологии оценки риска на этапе пусконаладочных работах резервуара при строительстве завода по производству сжиженного природного газа (далее — СПГ), основанный на применении экспертного метода для определе...

Особенности управления рисковыми событиями в процессах добычи и переработки нефтепродуктов

В статье рассматриваются особенности применения риск-менеджмента в добыче и переработке нефтепродуктов на месторождениях РК, определяются основные этапы управления как благоприятными, так и неблагоприятными событиями.

Анализ горно-геологических и климатических факторов, влияющих на напряженно-деформированное состояние газопроводов при их прокладке и эксплуатации

Магистральные трубопроводы являются объектами повышенной опасности. Автоматизированная система контроля герметичности газопроводов позволит предотвратить такие последствия аварий на всех участках трубопроводов, как большие экономические потери и загр...

Новые технологии пожаротушения на особо взрывопожароопасных объектах

В данной статье рассматриваются применяемые и новые технологии пожаротушения на особо взрывоопасных объектах; на применен некоторых систем проанализированы современные средства пожаротушения, которые обеспечивают эффективность их применения в целом д...

Особенности транспортировки высоковязкой нефти в условиях эксплуатации «горячего» трубопровода

Статья посвящена вопросам обоснования решения задачи о повышении энергоэффективности системы «трубопровод — насосная станция» в случае горячей перекачки нефти, дана оценка трубопроводной системы Казахстана, перекачивающих высоковязкие нефти. Авторы п...

Технологические устройства объектов добычи и подготовки нефти в контексте системы нормирования выбросов загрязняющих веществ

В статье автор рассматривает объекты добычи и подготовки нефти с точки зрения их воздействия на атмосферный воздух. Рассмотрены технологические устройства, непосредственно участвующие в добыче, сборе и подготовке сырья, и вспомогательные устройства, ...

Похожие статьи

Особенности развития аварийных ситуаций на мобильной установке подготовки нефти

В статье рассматриваются особенности развития аварийных ситуаций на мобильной установке подготовки нефти, рассмотрен процесс разгерметизации нефтегазосепаратора, определены направления для разработки профилактических мероприятий.

Оценка риска пожаров и взрывов на установке комплексной подготовки газов

Опасными производственными объектами являются газо- и нефтеперерабатывающие предприятия. На таких объектах приобретаются, перерабатываются, применяются грузы, которые в любой момент могут привести к аварийной ситуации. Во избежание аварий необходимо ...

Сценарии развития аварийных ситуаций на мобильной установке подготовки нефти и газа

В работе рассмотрены сценарии развития аварийных ситуаций на мобильной установке подготовки нефти и газа, определены виды оборудования, которые наиболее подвержены риску разгерметизации.

Исследование эффективности работы установок низкотемпературной сепарации

Определение оптимальных технологических режимов, а также повышение эффективности процесса проектирования технологических схем на нефтяных и газовых месторождениях являются одними из важнейших факторов, влияющие на научно-технический прогресс в нефте-...

Риск-ориентированный подход к обеспечению безопасности резервуара при строительстве завода по производству сжиженного природного газа на этапе пусконаладочных работ

В работе рассмотрен подход для разработки методологии оценки риска на этапе пусконаладочных работах резервуара при строительстве завода по производству сжиженного природного газа (далее — СПГ), основанный на применении экспертного метода для определе...

Особенности управления рисковыми событиями в процессах добычи и переработки нефтепродуктов

В статье рассматриваются особенности применения риск-менеджмента в добыче и переработке нефтепродуктов на месторождениях РК, определяются основные этапы управления как благоприятными, так и неблагоприятными событиями.

Анализ горно-геологических и климатических факторов, влияющих на напряженно-деформированное состояние газопроводов при их прокладке и эксплуатации

Магистральные трубопроводы являются объектами повышенной опасности. Автоматизированная система контроля герметичности газопроводов позволит предотвратить такие последствия аварий на всех участках трубопроводов, как большие экономические потери и загр...

Новые технологии пожаротушения на особо взрывопожароопасных объектах

В данной статье рассматриваются применяемые и новые технологии пожаротушения на особо взрывоопасных объектах; на применен некоторых систем проанализированы современные средства пожаротушения, которые обеспечивают эффективность их применения в целом д...

Особенности транспортировки высоковязкой нефти в условиях эксплуатации «горячего» трубопровода

Статья посвящена вопросам обоснования решения задачи о повышении энергоэффективности системы «трубопровод — насосная станция» в случае горячей перекачки нефти, дана оценка трубопроводной системы Казахстана, перекачивающих высоковязкие нефти. Авторы п...

Технологические устройства объектов добычи и подготовки нефти в контексте системы нормирования выбросов загрязняющих веществ

В статье автор рассматривает объекты добычи и подготовки нефти с точки зрения их воздействия на атмосферный воздух. Рассмотрены технологические устройства, непосредственно участвующие в добыче, сборе и подготовке сырья, и вспомогательные устройства, ...

Задать вопрос