Отправьте статью сегодня! Журнал выйдет 26 июля, печатный экземпляр отправим 30 июля
Опубликовать статью

Молодой учёный

Алгоритм получения матрицы жесткости четырехугольного конечного элемента

8. Строительство
1215
Поделиться
Библиографическое описание
Николаев, А. П. Алгоритм получения матрицы жесткости четырехугольного конечного элемента / А. П. Николаев, Е. И. Сорокина. — Текст : непосредственный // Современные тенденции технических наук : материалы II Междунар. науч. конф. (г. Уфа, май 2013 г.). — Т. 0. — Уфа : Лето, 2013. — С. 53-56. — URL: https://moluch.ru/conf/tech/archive/74/3809/.

В статье исследуются в трех вариантах алгоритмы получения матриц жесткости четырехугольного конечного элемента.

Ключевые слова: объемный конечный элемент, матрица жесткости, вектор узловых неизвестных.

Для расчета осесимметрично нагруженных тел вращения из несжимаемых материалов разработаны объемные конечные элементы с поперечным сечением в виде четырехугольника. Для выполнения численного интегрирования произвольный четырехугольник в системе координат r, z с узлами i, j, k, l отображался на квадрат с локальными координатами ξ, η, изменяющимися в пределах -1 ≤ ξ, η ≤ 1. Зависимость между координатами r, z и локальными координатами ξ, η определялась билинейными соотношениями

; ,                                                                         (1)

где  — матрицы-строки координат узлов четырехугольника.

Дифференцированием соотношений (1) определялись производные глобальных координат r,ξ, r,η, z,ξ, z,η и локальных координат ξ,r, η,r, ξ,z, η,z в глобальной системе координат.

Четырехугольный конечный элемент разрабатывался в трех вариантах.

1. Столбец узловых неизвестных содержит только перемещения и принимается в виде

;                                                           (2)

где

 — перемещения вдоль осей r и z соответственно в узловой точке m (m = i, j, k, Каждая составляющая перемещения внутренней точки конечного элемента аппроксимируется через узловые неизвестные билинейными зависимостями (1).

Вектор-столбец внутренней точки конечного элемента  определяется в матричном виде выражением

,                                                                                                            (3)

где матрица [A] имеет вид

.

Деформации внутренней точки конечного элемента определяются матричным выражением

.                                                                      (4)

Гидростатическое давление σ0 принимается постоянным по площади четырехугольника.

2. Во втором варианте конечного элемента в каждом его узле в качестве узловых неизвестных принимаются перемещения и их первые производные. Вектор узловых неизвестных в локальной системе координат имеет вид

,                                                                                               (5)

где

;

;

 — производные радиального и осевого перемещений в локальной системе координат.

Перемещения внутренней точки конечного элемента определяются через векторы узловых перемещений в локальной системе координат соотношениями

;,                                                                     (6)

где компонентами матрицы , содержащей функции формы, являются полиномы Эрмита третьей степени.

С использованием аппроксимирующих соотношений (6) формируется матричная зависимость (3) и (4).

Гидростатическое давление принимается постоянным по площади четырехугольника.

3. В третьем варианте конечного элемента перемещения аппроксимировались соотношениями второго варианта, а гидростатическое давление считалось изменяющимся в зависимости от узловых значений по билинейному закону

,                                                                                                   (7)

где

.

Для получения матрицы жесткости и векторов узловых усилий дискретных элементов при действии сил, распределенных по объему, используется равенство работ внешних и внутренних сил на возможных перемещениях

v,                                                                                        (8)

где

 — элементарный объем дискретного элемента;

 — вектор-строка составляющих поверхности сил.

С использованием матричной зависимости

,                                                           (9)

равенство (8) принимает вид

,                                                                          (10)

где

ds — элементарная площадка поперечного сечения элемента.

Объемная деформация ε0, входящая в (15), определяется выражением

.                                                      (11)

Принимая во внимание (3), (4), (9), (10) и (11) выражение (12) представим в виде

                             (13)

Выполняя минимизацию функционала (13) по компонентам вектора  и по компонентам узловых неизвестных гидростатического давления , получим систему уравнений

;

,                                                                                                                 (14)

где

;

;

.

Систему (14) можно представить в традиционной конечно-элементной формулировке

,                                                                                                         (15)

где

 — модифицированная матрица жесткости конечного элемента;

 — вектор узловых сил конечного элемента.

 — вектор узловых неизвестных конечного элемента.

При получении матриц жесткости в первом и втором вариантах конечных элементов матрица [β] соотношения (14) представляет собой столбец {β}.

Модифицированная матрица жесткости [Кн] имеет размеры 9×9 — в первом варианте конечного элемента, 25×25 — во втором варианте и 28×28 — в третьем варианте.

В качестве примера определено напряженно-деформированное состояние защемленной по торцам цилиндрической оболочки, нагруженной внутренним давление интенсивности q=, при следующих исходных данных: внутренний радиус R=0,5 м; толщина стенки оболочки h=0,05 м; модуль упругости материала Е = 2 · 105; коэффициент Пуассона υ = 0,5. расчет выполнялся в трех вариантах.

В первом варианте использовался конечный элемент с узловыми неизвестными в виде радиального и осевого перемещения υ. Гидростатическое давление σ0 принималось постоянным по площади четырехугольника.

Во втором варианте расчет выполнен с использованием конечного элемента, узловыми неизвестными которого являлись перемещения и их первые производные. Гидростатическое давление σ0 принималось постоянным по площади сечения объемного конечного элемента.

В третьем варианте расчета использовался элемент с узловыми неизвестными в виде перемещений и их первых производных. Гидростатическое давление распределялось в поперечном сечении объемного конечного элемента по линейному закону.

Анализ результатов показал хорошую сходимость вычислительного процесса и совпадение результатов по вариантам.

Сравнительными расчетами установлено, что наилучшие результаты получаются при использовании конечного элемента с узловыми неизвестными в виде перемещений и их первых производных, а также гидростатических давлений (т. е. в третьем варианте).

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью

Молодой учёный