Система мониторинга автотранспорта | Статья в сборнике международной научной конференции

Автор:

Рубрика: 2. Электроника, радиотехника и связь

Опубликовано в

VII международная научная конференция «Технические науки в России и за рубежом» (Москва, ноябрь 2017)

Дата публикации: 13.10.2017

Статья просмотрена: 15 раз

Библиографическое описание:

Шибеко Р. В. Система мониторинга автотранспорта [Текст] // Технические науки в России и за рубежом: материалы VII Междунар. науч. конф. (г. Москва, ноябрь 2017 г.). — М.: Буки-Веди, 2017. — С. 51-55. — URL https://moluch.ru/conf/tech/archive/286/13085/ (дата обращения: 18.06.2018).



В статье приводится система мониторинга автотранспорта организации, которая обеспечивает контроль за несанкционированными действиями обслуживающего персонала (контроль за расходованием топлива, контроль за перемещением автотранспорта, контроль за километражем перемещения автотранспорта).

Ключевые слова: автомобиль, автотранспорт, мониторинг, датчик, микроконтроллер, координаты, GSM, GPS, уровень топлива, энкодер

У каждого предприятия, имеющего парк автомобильной техники, возникают проблемы с контролем состояния данной техники. Исходя из этого, наличие такой системы мониторинга является актуальной задачей. Автотранспортное предприятие может работать на обширных территориях с большим удалением от центральной диспетчерской службы, причем иногда в труднодоступных местах, что затрудняет контроль за несанкционированными действиями обслуживающего персонала. К таким предприятиям можно отнести станции скорой помощи, пожарные части, предприятии по благоустройству территорией, предприятии по дорожному строительству и другие.

Представлена система осуществляющая мониторинг за автотранспортом и решающая следующие задачи:

– контроль за расходованием топлива;

– контроль за перемещением автотранспорта;

– контроль за километражем перемещения автотранспорта.

Максимальное количество контролируемых машин — 100. На каждой машине установлены: датчик уровня топлива в топливном баке, схема измерения километража, модуль определения координат, радиоканал для передачи данных на центральный диспетчерский пульт. Максимальная дальность контроля автотехники — 100 км.

Далее идет речь о системе, устанавливаемая на автомобиле. Принимающая сторона на центральном пульте не рассматривается.

На рисунке 1 представлена структурная схема, на которой обозначено:

– ДУТ — датчик уровня топлива. Служит для измерения уровня топлива в топливном баке;

– ДК — датчик километража. Служит для измерения пути пройденной автотехникой;

– СОК — схема определения координат. Служит для определения местоположения автотехники;

– БРк — блок радиоканала. Служит для передачи данных на центральный диспетчерский пульт;

– БМк — блок микроконтроллера. Является центральным управляющим звеном системы;

– Т — таймер реального времени. Предназначен для подсчета временных интервалов.

– ОЗУ — оперативное запоминающее устройство. Предназначено для запоминания измеренных данных.

– БИ — блок интерфейса. Связывает проектируемую систему с другими системами автомобиля.

Структурная схема системы представлена на рисунке 1.

Рис. 1. Структурная схема системы

Ниже представлена функциональная схема системы.

Блоки системы следующие:

– Э — энкодер. Сообщает микроконтроллеру данные о направлении движения и позволяет вычислить пройденный километраж.

– ЧРВ — часы реального времени. Ведут подсчет временных интервалов.

– П — память системы. Служит для запоминания измеренной информации при отсутствии связи с последующей передачей при наличии связи.

– GSM — схема организации канала сотовой связи.

– AVR — центральный микроконтроллер. Управляет всей системой и производит необходимые вычисления.

– GPS — схема определения географических координат автомобиля.

– ДУТ — датчик уровня топлива. Сообщает микроконтроллеру об уровне топлива в баке.

– СП — супервизор питания. Формирует сигнал сброса для микроконтроллера.

Рис. 2. Функциональная схема системы

Система построена по радиальному принципу и работает следующим образом. Центральным звеном является микроконтроллер, который имеет прямую информационную связь со всеми блоками системы.

Энкодер сообщает микропроцессору о текущем абсолютном угле поворота контролируемого колеса. В результате микроконтроллер может определить направление движения (вперед, назад, стоянка) и пройденный километраж. Энкодер обслуживается по CAN-интерфейсу.

Часы реального времени сообщаю текущее время микроконтроллеру и обслуживаются по интерфейсу 1-Wire.

Память системы обслуживается по интерфейсу SPI и предназначена для запоминания данных измерений.

GSM-модуль предназначен для организации канала сотовой связь и обслуживается по интерфейсу USB. Данный GSM-модуль используется постоянно после каждого цикла измерений. В цикл измерения входит опрос энкодера, часов реального времени, датчика уровня топлива и GSM-модуля. Передается информация о текущей географической координате, текущем уровне топлива направление движения. Если в данный момент сотовая связь отсутствует то результаты измерения с временными отметками запоминаются в памяти системы с последующей передачей посредством GPS-модуля при наличии связи. Каждый цикл измерения повторяется через одну минуту. Энкодер опрашивается чаще.

В системе предполагается использование следующих элементов.

Микроконтроллер AT32UC3C2512C. AVR32 UC3 — это 32-разрядмое процессорное ядро разработки 2007 года, ориентированное на широкий круг задач, в которых требуется применение мал о потребляющего быстродействующего 32-разрядного микроконтроллера с высокой степенью интеграции, снабженного Flash-памятью и ОЗУ. Ядро процессора является упрошенной версией ядра AVR32, но ориентировано оно на рынок изделий, где традиционно применяются процессоры класса ARM7 и Cortex-МЗ. Благодаря тому, что ядро AVR32 UC3 разрабатывалось совсем недавно, в нем учтены недостатки выпушенных ранее решений и требования современного рынка к 32-разрядным процессорам общего назначения.

Таблица 1

Параметры микропроцессора

ЦПУ: Ядро

AVR32

ЦПУ: F, МГц

от 0 до 66

Память: Flash, Кбайт

256

Память: RAM, Кбайт

64

I/O (макс).шт.

45

Таймеры: 16-бит.шт

3

Таймеры: Каналов ШИМ.шт.

15

Таймеры RTC

Да

Интерфейсы: UART, шт.

4

Интерфейсы: SPI, шт.

1

Интерфейсы: I2C, шт.

2

Интерфейсы: USB, шт.

1

Интерфейсы: САN, шт.

2

Интерфейсы: Etnernet, шт.

1

Интерфейсы: DMA, шт.

5

Интерфейсы LIN, шт.

12

Аналоговые входы. Разрядов АЦП, бит

12

Аналоговые входы: Каналов АЦП, шт.

5

Аналоговые входы: Быстродействие АЦП, kSPS

2000

Аналоговые входы Аналоговый компаратор, шт

-5

Аналоговые выходы: Разрядов ЦАП,.бит

12

Аналоговые выходы Каналов ЦАП, шт.

2

vcc, В

от 3 до 5.5

Абсолютный энкодер CEV58— DN.

Абсолютный энкодер CEV58 - DN

Рис.3 Абсолютный энкодер CEV58 — DN

Таблица 2

Параметры CEV58— DN

Напряжение питания

11...27В

Потребление тока без нагрузки

<= 350 мА

Тип

Одно-/многооборотный

Общее разрешение

<= 31 бит

Число шагов на оборот

<=8192

Число оборотов

<= 256000

Выходной код

25 бит

Интерфейс

CAN DeviceNet. EN 50325–2

Спецификация CAN 2.0 А

11-битный идентификатор

Скорость передачи данных

125, 250, 500 кбит/с

GPS— модуль. В проекте используется модуль EB-500 предназначены для встраивания в мобильные устройства поэтому имеет весьма небольшие габариты 13 x 15 x 2.2 мм. Модуль умеет работать как с пассивными, так и с активными антеннами.

Для того чтобы с большой точностью определять координаты, приемник должен принять сигнал как минимум с трех спутников. При увеличении числа спутников, с которых ловится сигнал, увеличивается и точность вычисления координат приемника. EB-500 имеет 66 каналов, для обнаружения спутников, их слежения и сохранения положения в пространстве. Благодаря этому время горячего старта — Hotstart (когда спутники уже найдены и сохранены в памяти модуля), согласно документации, составляет всего 1,5 секунды. Тогда как время холодного старта от 35 секунд. Эти времена указаны при ясном небе без видимых помех и с хорошей антенной. Так как модуль предназначен для мобильных устройств, питающихся от батарей, то диапазон питающих напряжений стандартный — от 4,2 до 3,0 вольт. Потребление модуля во время работы менее 28мА.

Часы реального времени DS1904. RTC iButton DS1904 является модулем часов реального времени, доступ к которым может быть осуществлен с минимальными аппаратными затратами. Передача данных производится последовательно, с применением протокола 1-Wire, который требует наличия всего одного провода данных и контакта корпуса. DS1904 имеет свой уникальный 64-х разрядный ROM- регистрационный номер, зашиваемый в чип лазером на стадии производства и часы реального времени/ календарь, реализованные в виде двоичного счетчика. Прочный MicroCan корпус имеет высокую устойчивость к воздействию внешних неблагоприятных факторов, таких как загрязнение, влажность и вибрация. Аксессуары DS1904 позволяют закрепить его практически на любой поверхности, включая печатные платы и пластмассовые брелоки для ключей. Дополнительно DS1904 имеет такие функции, как календарь, штамп времени и даты, секундомер, счетчик часов, таймер интервалов и формуляр к любому типу электронных устройств или программного обеспечения, используемого микроконтроллерами.

GSM-модуль. iRZMC52PU- конструктивно законченный GSM модем, предназначенный для приема и передачи данных, текстовых сообщений и факсов. Отлично приспособлен как для обеспечения мобильного доступа к сети Интернет, так и для промышленных приложений — телеметрии, беспроводного сбора данных с датчиков, дистанционного наблюдения и сигнализирования. Управление осуществляется стандартными АТ-командами. Модем оборудован светодиодом, позволяющим отслеживать статус соединения.

Основные характеристики:

– диапазоны частот: GSM 900 1800 МГц или S50 900 1800 1900 МГц (определяется GSM модулем)

– выходная мощность 2W (класс 4 для EGSM900).

– GPRS класс 8/10 (определяется GSM-модулем):

– TCP/IP стек, доступный через АТ-команды:

– МС класс В:

– CSD до 14.4 kbps;

– USSD:

– SMS:

– передача голоса:

– факс — группа 3: класс 1.

– напряжение питания от 9 до 25 В.

Интерфейсы:

– разъём RJ11 для подключения питания.

– разъём USB В для подключения USB интерфейса.

– разъём DB9 для подключения RS-232 интерфейса.

– разъём FME для подключения GSM антенны

Модем MC52PU представляет собой компактное устройство, выполненное в пластмассовом корпусе.

Таким образом, представленная система позволяет более качественно организовать работу имеющегося автотранспорта, исключить несанкционированное его использование, а также различные манипуляции с топливом.

Литература:

  1. Барканов, П. А. Справочник конструктора РЭА: компоненты, механизмы, надежность / П. А. Барканов, Б. Е. Бердиневский, П. Д. Верхопятницкий. — М.: Радио и связь, 1985. — 384 с.
  2. Борщенко, Я.А., Васильев, В. И. Электронные и микропроцессорные системы автомобилей: Учебное пособие. / Я. А. Борщенко, В. И. Васильев. — Курган: Изд-во Курганского гос. ун-та, 2007.- 207 с.

3. Быков, Б. В. Основы конструкции современного автомобиля / Б. В. Быков — М.: Маршрут, 2004. — 36 с.

4. Гаврилов, К. Л. Профессиональная диагностика ДВС, систем: топливоснабжения, зажигания, энергосбережения, пуска: Учебник для вузов автомобильного трансп. / К. Л. Гаврилов. 3-е изд., перераб. и доп. — М.: Транспорт, 1980. — 439 с.

Основные термины (генерируются автоматически): GPS, интерфейс, датчик уровня топлива, USB, SPI, GSM, реальное время, контроль, микроконтроллер, направление движения, память системы.

Ключевые слова

мониторинг, автомобиль, автотранспорт, микроконтроллер, датчик, GPS, координаты, GSM, уровень топлива, энкодер

Обсуждение

Социальные комментарии Cackle
Задать вопрос