Анализ применения сильфонных компенсаторов | Статья в сборнике международной научной конференции

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Автор:

Рубрика: 14. Общие вопросы технических наук

Опубликовано в

VII международная научная конференция «Технические науки в России и за рубежом» (Москва, ноябрь 2017)

Дата публикации: 15.08.2017

Статья просмотрена: 1200 раз

Библиографическое описание:

Глебович, С. А. Анализ применения сильфонных компенсаторов / С. А. Глебович. — Текст : непосредственный // Технические науки в России и за рубежом : материалы VII Междунар. науч. конф. (г. Москва, ноябрь 2017 г.). — Москва : Буки-Веди, 2017. — С. 160-163. — URL: https://moluch.ru/conf/tech/archive/286/12854/ (дата обращения: 19.04.2024).



В данной работе описаны особенности применения сильфонных компенсаторов на трубопроводах. Цель работы — провести анализ использования сильфонных компенсаторов в промышленности. Важным резервом понижения капитальных затрат, увеличения надёжности работы трубопроводов и оборудования считается использование в них особых приспособлений для компенсации температурных деформаций. Для данных целей используются сильфонные компенсаторы, имеющие значимые технико-экономические преимущества перед компенсирующими приспособлениями иных типов. Простота изготовления, высочайшие эксплуатационные и технико-экономические характеристики сделали возможность их широкого применения в разных отраслях промышленности. В результате аналитического исследования показано, что выбор компенсирующих элементов для их надёжного и долговременного использования должен быть с учётом условий их эксплуатации.

Ключевые слова: сильфонный компенсатор, компенсация сильфонного компенсатора, смещение сильфонного компенсатора

This paper describes the features of the application of bellows expansion joints for pipelines. The aim of this work is to analyze the use of bellows expansion joints in the industry. Important reserve decrease capital costs, increase the reliability of pipelines and equipment is the use of special fixtures to compensate for thermal deformations. For data purposes, bellows expansion joints, having significant technical and economic advantages over compensating devices of other types. Ease of fabrication, high performance and techno-economic characteristics have made the possibility of their wide application in different industries. The result of the analytical study it is shown that the choice of balancing items depends on their operating conditions.

Keywords: bellows compensator, bellows compensator compensation, bellows expansion joint offset

Один из основных законов физики заключается в том, что материалы подвержены расширению и сжатию, обусловленному изменением температуры. Сильфонные компенсаторы представляют собой элементы, которые поглощают все эти расширения, сжатия, а также вибрации и позволяют промышленным системам работать непрерывно и эффективно. [3;5]

Трубопроводы из-за теплообмена между транспортируемой средой и стенками трубы при эксплуатации, греются и удлиняются. Так как концы любого трубопровода прикреплены в неподвижных опорах и соединены с оборудованием, то при тепловом удлинении в стене трубы появляются напряжения. [5]

При повышенной температуре транспортируемой среды напряжения от теплового удлинения могут существенно превысить допускаемые, что приведёт к разрушению трубопровода либо к деформации опор и корпуса оборудования. Для предотвращения опасных явлений создаются самокомпенсирующие трубопроводы либо инсталлируются сильфонные компенсаторы. [5]

В судостроительной промышленности используется широкая номенклатура изделий, в которую входят сильфонные компенсаторы. Они используются в системах жизнеобеспечения судна, на газовых трубопроводах.

Используется сильфонные компенсаторы в трубопроводных системах подачи воды, пара на кораблях военно-морского и гражданского флотов. В текущее время разрабатываются более совершенные модели арматуры, но использование уже изготовленных весьма обосновано.

В авиационной технике сильфон и сильфонные компенсаторы используются в разных системах авиационных двигателей, таких как в системах кондиционирования воздуха и трубопроводах, обеспечивающих работу антиобледенительных систем самолёта.

В металлургии сильфонные компенсаторы нашли достойное применение во многих системах заводов. Обычно, это изделия очень больших диаметров, выполненные в нестандартных вариациях, под конкретного заказчика. [5]

Применение сильфонных компенсаторов во всех отраслях народного хозяйства имеет тенденцию нарастания по причинам ужесточения экологических требований.

Главная область внедрения сильфонных компенсаторов — установка на трубопроводы. В трубопроводе могут появляться напряжения, стимулированные многими факторами, к примеру:

– внутренние либо наружные давления при рабочей температуре;

– вес трубопровода и транспортируемых материалов;

– принудительное смещение трубопровода в связи внешних помех;

– тепловое расширение.

Ввиду своей важности, напряжения, обусловленные тепловым расширением, должны быть рассмотрены в индивидуальном порядке. [6]

Напряжения, появляющиеся в трубопроводах, зависят от следующих причин:

– силы, направленной от источника внешних помех;

– деформаций, обусловленных наружными сторонними предметами;

– гибкости материала трубы.

В случае, если уровень напряжений или сил и количества движения превышают предельные значения, необходимо увеличить гибкость трубопровода.

Этого можно достичь за счёт:

– изменения общей конструкции трубопровода;

– использования элементов, имеющих высокую гибкость.

Первый способ сможет привести к потере температуры давления, и содействовать увеличению затрат, поэтому наиболее рациональным решением является использование сильфонного компенсатора. [6]

Удобство применения сильфонных компенсаторов заключается в том, что данный вид компенсатора не требует вспомогательного обслуживания в процессе эксплуатации. При всем этом, однако, сильфон относится к невосстанавливаемому (неремонтируемому) элементу, и период его эксплуатации в большинстве своём характеризует срок безремонтной эксплуатации трубопроводов, в составе которых он употребляется. Срок службы сильфонного компенсатора напрямую зависит от качества материалов, из которых он сделан. [2]

Сильфонные компенсаторы можно разделить на три группы в зависимости от типа смещений, которые они должны поглотить [7;8] (рис.1): осевые, сдвиговые, угловые.

C:\Users\User\Desktop\Clip2net_170803101955.png

Рис. 1. Группы сильфонных компенсаторов

Сильфонные компенсаторы имеют довольно большой диапазон применения. Ключевыми областями использования считаются сосуды под давлением, трубопроводы, а также системы транспортирования и перекачки разных жидкостей и газов.

В частности, благодаря собственной гибкой структуре и особой конструкции, сильфонные компенсаторы могут удовлетворять все требования, предъявляемые для трубопроводов высокого давления и различного диаметра. Любой тип сильфонного компенсатора обладает различными преимуществами в соответствии с областью его применения и конструкцией. Сильфонные компенсаторы, которые подобраны и установлены правильно, гарантируют надёжное соединение.

Осевые, сдвиговые либо угловые сильфонные компенсаторы применяются для предотвращения проблем, связанных с расширением и вибрацией. Но, в некоторых случаях, когда рабочее давление превышает допустимые значения, или если типовые конструкции компенсаторов не удовлетворяют требованиям, предлагается применять сбалансированные или универсальные сильфонные компенсаторы. [7;8]

Сбалансированные по давлению и универсальные сильфонные компенсаторы нужно применять в случаях, когда нужно компенсировать очень большие сдвиговые расширения без использования необходимого количества направляющих. (Рис.2)

Рис. 2. Компенсация больших сдвиговых расширений универсальным сильфонным компенсатором

Важная функция сильфонных компенсаторов, кроме компенсации температурных расширений, содержится в решении проблем, связанных с вибрацией. Сильфонные компенсаторы чрезвычайно эффективны, в особенности при компенсации вибрации высокой частоты и малой амплитуды. В случае мощных колебаний системы, таковых например, как поршневой двигатель, компенсаторы не способны подавить вибрацию. Другими словами, можно сказать, что амплитуда колебаний системы не должна превосходить 10 % от суммарных перемещений компенсатора. [5]

Анализ состояния трубопроводов и элементов систем тепловых сетей, показал, что за период эксплуатации повреждение сильфонных компенсаторов случается. [1;2]

Приобретённые данные о причинах повреждаемости демонстрируют, что причинами возникновения дефектных разрушений на сильфонных компенсаторах явились:

– нарушение соосности трубопроводов из-за их просадки в процессе использования;

– нарушение конструкций неподвижных опор;

– коррозия гофр компенсаторов.

На снижение сроков службы сильфонных компенсаторов влияют следующие факторы:

– конструкция сильфонных компенсаторов не гарантирует 100 % герметичности гофр от проникновения грунтовой воды;

– опыт монтажа сильфонных компенсаторов, которые устанавливались на трубопроводах наземной и подвальной прокладки, указывает, что надёжно закрепить их на подвижные и направляющие опоры представляет большую сложность;

– длительное хранение компенсаторов под открытым небом в отсутствии антикоррозийной защитной смазки, нарушения инструкции по их транспортировке и монтажу приводят к повреждениям.

– нарушение технологии строительно-монтажных работ приводит к проникновению влаги под изоляцию или нарушению соосности, что сокращает срок службы компенсатора. [1]

Таким образом, можно сделать следующее заключение. Применяемые при изготовлении компенсаторов стали должны быть стойкими в условиях воздействия нагрузок. Для увеличения сроков службы сильфонных компенсаторов нужно соблюдать требования к производству, сбережению, перевозке и монтажу с целью недопущения их повреждений и коррозии. При производстве элементов стоит предусмотреть нанесение антикоррозийного покрытия на внешнюю поверхность гофр сильфонных компенсаторов. Нужно сделать правильный выбор оптимальных для трубопровода компенсаторов и тогда срок эксплуатации изделий будет больше. Отсутствие компенсаторов на трубах может привести к таким нежелательным результатам, как изменение длины трубы, при температурном расширении либо сжатии металла трубы, что в дальнейшем приведёт к разрыву трубопровода.

Литература:

  1. Анализ эксплуатации сильфонных компенсаторов на предприятии. http://kompensator.cwx.ru/ Дата обращения 03.08.2017.
  2. Антонов П. Н. «Об особенностях применения компенсаторов», журнал «Трубопроводная арматура», № 1, 2007.
  3. Бурцев К. Н. Металлические сильфоны. Машгиз, М., 1963.
  4. Логунов В. В., Поляков В. Л., Слепченок В. С. «Опыт применения осевых сильфонных компенсаторов в тепловых сетях», журнал «Новости теплоснабжения», № 7, 2007.
  5. Применение сильфонных компенсаторов на различных трубопроводах. http://silphon.ru/ Дата обращения 03.08.2017.
  6. Применение компенсаторов. http://ros-pipe.ru/ Дата обращения 03.08.2017.
  7. Сильфонные компенсаторы. http://santermo.ru/ Дата обращения 03.08.2017.
  8. Справочник «Промышленное газовое оборудование» / Под ред. Е. А. Карякина. — 5-е. — Саратов: Научно-исследовательский центр промышленного газового оборудования «Газовик», 2010.
Основные термины (генерируются автоматически): компенсатор, трубопровод, расширение, тепловое расширение, тепловое удлинение.

Ключевые слова

сильфонный компенсатор, компенсация сильфонного компенсатора, смещение сильфонного компенсатора

Похожие статьи

Способы повышения компенсирующей способности сильфонных...

а — коэффициент термического расширения, мм/(моС); L — длина трубопровода, мм

Компенсация температурных удлинений трубопроводов тепловых сетей. Виды компенсаторов. [Электронный ресурс].

Применение сильфонных компенсаторов на трубопроводах при...

где — тепловое расширение трубы, мм

При монтаже сильфонных компенсаторов на трубопроводе допустимо использовать только один компенсатор между двумя неподвижными опорами.

Деформации технологических трубопроводов и оборудования...

компенсации температурного расширения трубопроводов;  предотвращения разрушения труб при деформации трубопроводов

Применение сильфонных компенсаторов на трубопроводах при...

Повышение эффективности разделения компонентов природного...

Изоэнтальпийное расширение газа.

Изоэнтропийное расширение газа. Самым распространенным способом понижения температуры на газоконденсатных промыслах является изоэнтропийное расширения, при помощи детандерного оборудования.

Математическое моделирование тепловых полей при...

Перспективным направлением в области электрообогрева трубопроводов является применение индуктивно-резистивной системы нагрева, основное назначение которой — компенсация тепловых потерь нефтепроводов и их предпусковой разогрев.

Определение теплопотерь через теплоизоляцию трубопроводов...

Проведено сравнение методик расчёта теплопотерь трубопроводами системы теплоснабжения для различных типов и плотности тепловой изоляции. Проведённые расчёты позволяют выбрать оптимальную толщину тепловой изоляции трубопроводов систем...

Передача тепла через стенки бытовой печи | Статья в журнале...

Увеличение теплового сопротивления стенки, например в двух контурных печах, может привести к слабому

Огнеупоры, характеризуются термостойкостью, газопроницаемостью, теплоёмкостью, теплопроводностью, коэффициентом термического расширения...

Определение напряженно-деформированного состояния...

- вес трубопроводов, запорной арматуры и газа внутри них; - температурное расширение конструкций; - кинематическое нагружение, связанное с изменением высотного положения опорных точек трубопроводной обвязки (выпучивание или просадка опор...

Совершенствование метода решения термоупругой задачи...

· - коэффициент линейного температурного расширения трубы и породы; · - радиальные напряжения в стенке трубы и горной матрице; · - радиус зоны протаивания окружающих скважину мерзлых пород.

Похожие статьи

Способы повышения компенсирующей способности сильфонных...

а — коэффициент термического расширения, мм/(моС); L — длина трубопровода, мм

Компенсация температурных удлинений трубопроводов тепловых сетей. Виды компенсаторов. [Электронный ресурс].

Применение сильфонных компенсаторов на трубопроводах при...

где — тепловое расширение трубы, мм

При монтаже сильфонных компенсаторов на трубопроводе допустимо использовать только один компенсатор между двумя неподвижными опорами.

Деформации технологических трубопроводов и оборудования...

компенсации температурного расширения трубопроводов;  предотвращения разрушения труб при деформации трубопроводов

Применение сильфонных компенсаторов на трубопроводах при...

Повышение эффективности разделения компонентов природного...

Изоэнтальпийное расширение газа.

Изоэнтропийное расширение газа. Самым распространенным способом понижения температуры на газоконденсатных промыслах является изоэнтропийное расширения, при помощи детандерного оборудования.

Математическое моделирование тепловых полей при...

Перспективным направлением в области электрообогрева трубопроводов является применение индуктивно-резистивной системы нагрева, основное назначение которой — компенсация тепловых потерь нефтепроводов и их предпусковой разогрев.

Определение теплопотерь через теплоизоляцию трубопроводов...

Проведено сравнение методик расчёта теплопотерь трубопроводами системы теплоснабжения для различных типов и плотности тепловой изоляции. Проведённые расчёты позволяют выбрать оптимальную толщину тепловой изоляции трубопроводов систем...

Передача тепла через стенки бытовой печи | Статья в журнале...

Увеличение теплового сопротивления стенки, например в двух контурных печах, может привести к слабому

Огнеупоры, характеризуются термостойкостью, газопроницаемостью, теплоёмкостью, теплопроводностью, коэффициентом термического расширения...

Определение напряженно-деформированного состояния...

- вес трубопроводов, запорной арматуры и газа внутри них; - температурное расширение конструкций; - кинематическое нагружение, связанное с изменением высотного положения опорных точек трубопроводной обвязки (выпучивание или просадка опор...

Совершенствование метода решения термоупругой задачи...

· - коэффициент линейного температурного расширения трубы и породы; · - радиальные напряжения в стенке трубы и горной матрице; · - радиус зоны протаивания окружающих скважину мерзлых пород.