Исследование эффективности правильного обнаружения сигналов на фоне одномерных дважды стохастических случайных процессов | Статья в сборнике международной научной конференции

Автор:

Рубрика: 2. Электроника, радиотехника и связь

Опубликовано в

IV международная научная конференция «Технические науки: проблемы и перспективы» (Санкт-Петербург, июль 2016)

Дата публикации: 05.07.2016

Статья просмотрена: 25 раз

Библиографическое описание:

Андриянов Н. А. Исследование эффективности правильного обнаружения сигналов на фоне одномерных дважды стохастических случайных процессов [Текст] // Технические науки: проблемы и перспективы: материалы IV Междунар. науч. конф. (г. Санкт-Петербург, июль 2016 г.). — СПб.: Свое издательство, 2016. — С. 37-40. — URL https://moluch.ru/conf/tech/archive/166/10872/ (дата обращения: 19.11.2018).



В статье рассмотрен случай, когда сигнал известной формы передается на фоне последовательности со сложной структурой. При этом синтезирован алгоритм обнаружения такого сигнала. Проведено исследование эффективности обнаружения для двух типов моделей.

Ключевые слова: дважды стохастические модели, имитация случайных процессов, обнаружение сигналов

Важнейшая задача статистической радиотехники — несомненно задача обнаружения сигналов [3–4]. Вся современная радиолокация происходит из попыток решить данную задачу. Действительно, обнаружение какой-либо цели может привести к благоприятным результатам в борьбе с противником или минимизировать собственные затраты. При этом при проектировании обнаружителей важно иметь какую-либо статистику. Эти данные можно получить с помощью статистического моделирования. Для описания сложных изображений себя хорошо зарекомендовали дважды стохастические модели [1,2,5,6].

Когда происходит обнаружение сигналов на фоне помех с авторегрессионной или дважды стохастической структурой, то имеются гипотезы о наличии детерминированного сигнала , на интервале дискретного времени (рис. 1) (гипотеза ) и гипотеза об отсутствии сигнала на интервале (гипотеза ). Запишем наблюдения как смесь реализации дважды стохастического процесса и белого шума, а также сигнала в соответствующей области:

,

,

где − случайные величины (СВ) с изменяющимися корреляционными связями ; − независимые гауссовские СВ с нулевыми средними значениями и дисперсиями (в случае, когда дисперсии постоянны). При отсутствии детерминированного сигнала (гипотеза ) наблюдения представляют собой сумму коррелированной помехи и белого шума: .

Рис. 1. Наблюдение сигнала на фоне коррелированной помехи

Для решения задачи обнаружения имеем следующую статистику:

.

Чтобы принять решение, есть ли сигнал или нет, необходимо найти и сравнить с пороговым уровнем:

(1)

где находится, например, из условия обеспечения заданной вероятности ложной тревоги .

Для того, чтобы получить статистику (1), воспользуемся известным выражением связи между прогнозом и оценкой вектора :

,

где − ковариационная матрица ошибок оптимального оценивания: . После подстановки этих соотношений в (1), получим

.(2)

Запишем вероятности ложной тревоги и пропуска цели следующим образом

- вероятность ложной тревоги,

— вероятность пропуска цели,

где — функция Лапласа, , .

Соответственно для вычисления вероятности правильного обнаружения нужно из единицы вычесть вероятность пропуска цели. Пороговое значение находится из условия, что выбирается заданная вероятность ложной тревоги.

Найдем необходимые статистические характеристики:

,

.

Таким образом, вычисление статистики (2), а также статистических характеристик требует проведения предварительного оценивания полезного сигнала.

Было проведено статистическое моделирование, при котором сравнивались дважды стохастическая и авторегрессионная модели.

Зависимость эффективности обнаружения сигнала от уровня сигнала и при разных параметрах r показана на рис. 2.

а

б

в

Рис. 2. Вероятность правильного обнаружения сигнала на основе дважды стохастической (штриховая линия) и авторегрессионной (сплошная линия) моделей: а — r = 0.3, б — r = 0.8; в — r = 0.99.

Очевидно, что дважды стохастическая модель обеспечивает эффективность обнаружения протяженных сигналов на 20–30 % выше, чем авторегрессионная. Следовательно, ее использование при проектировании реальных сигнал будет целесообразнее.

Литература:

  1. Андриянов Н. А. Дискретные дважды стохастические авторегрессионные модели случайных полей // Современные проблемы проектирования, производства и эксплуатации радиотехнических систем. 2014. № 1 (9). С. 69–72.
  2. Vasil'ev K. K., Dement'ev V. E., Andriyanov N. A. Application of mixed models for solving the problem on restoring and estimating image parameters // Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016. Т. 26. № 1. С. 240–247.
  3. Васильев К. К., Балабанов В. В. Обнаружение точечных аномалий на фоне мешающих изображений // Радиотехника. 1991. № 10. С. 86.
  4. Васильев К. К., Павлыгин Э. Д., Гуторов А.С Многомодельные алгоритмы обработки данных системы мобильных РЛС // Автоматизация процессов управления. 2014. № 4 (38). С. 4–13.
  5. Андриянов Н. А. Величина ошибки прогноза в точку на фоне смешанной модели сигнала // Современное научное знание: теория, методология, практика Сборник научных трудов по материалам Международной научно-практической конференции в 3-х частях. ООО «НОВАЛЕНСО». Смоленск, 2016. Ч. 3, С. 34–36.
  6. Андриянов Н. А., Васильев К. К., Дементьев В. Е. Разработка программного комплекса для решения задач фильтрации случайных полей // Современные тенденции в науке, технике, образовании. Сборник научных трудов по материалам Международной научно-практической конференции: в 3-х частях. 2016. Ч. 1, С. 40–41.
Основные термины (генерируются автоматически): ложная тревога, белый шум, статистическое моделирование, вероятность пропуска цели, обнаружение сигналов, эффективность обнаружения, детерминированный сигнал, заданная вероятность, коррелированная помеха, гипотеза.

Ключевые слова

дважды стохастические модели, имитация случайных процессов, обнаружение сигналов

Похожие статьи

Потенциальные возможности...

пространственно-корреляционный способ обработки, вероятность пропуска цели, элемент АР, помеха, взаимная корреляция, декаметровый диапазон, сигнал, корреляционная обработка...

Методы обнаружения первичных пользователей в когнитивных...

Вероятность корректного обнаружения первичных пользователей Pd и вероятность ложной тревоги Рf имеют важное значение для оценки эффективности обнаружения и определяются как [2, с.3]: (1).

Адаптивная фильтрация коррелированных помех

При этом эффективность системы обработки в целом, например, средняя вероятность правильного обнаружения полезного сигнала, оценивается путём усреднения величины D правильного обнаружения по неизвестному параметру FsT [1].

Методы моделирования случайных процессов | Статья в журнале...

Ключевые слова: статистическое моделирование, случайные величины, стохастические процессы.

Моделирование гауссовского белого шума.

М., «Наука», 1965. 227с. 3. Шведов А. С. Теория вероятностей и математическая статистика.

Разработка математической модели канала связи с белым...

Исследование эффективности правильного обнаружения сигналов... Запишем наблюдения как смесь реализации дважды стохастического процесса и белого шума, а также сигнала в соответствующей области: , , где − случайные величины (СВ)...

Корреляционные методы пеленгования источников излучения

При выполнении численного моделирования были приняты следующие допущения: шум

3. Ермолаев В. Т., Флаксман А. Г. Методы оценивания параметров источников сигналов и помех, принимаемых антенной

Генерация расчетных сейсмических воздействий по заданным...

Устранение полосового шума и зарисовывание пропущенных...

где, ответный сигнал однородной области изображения, вычисляемый усреднением пикселей в пределах окна заданного размера; компонент

полосовой шум, дистанционное зондирование, пиксели, апостериорная вероятность, модель Хубера-Маркова, зарисовывание изображения.

Эквалайзирование канала данных системы LTE... | Молодой ученый

W — вектор белого гауссова шума. Выделение RS и оценка канала: В приемнике генерируется такой же опорный сигнал, как и в передатчике.

Рис. 2. Вероятность битовой ошибки в зависимости от отношения сигнал/шум: а — модуляция BPSK; б — модуляция QPSK; в...

Улучшение спектрального разрешения при использовании...

С целью оценки эффективности первого и предлагаемого второго методов проведём статистическое моделирование, основанное на спектральном анализе

Первый метод даёт выигрыши при значительном превышении уровня полезного сигнала над шумом (b>5 дБ).

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Потенциальные возможности...

пространственно-корреляционный способ обработки, вероятность пропуска цели, элемент АР, помеха, взаимная корреляция, декаметровый диапазон, сигнал, корреляционная обработка...

Методы обнаружения первичных пользователей в когнитивных...

Вероятность корректного обнаружения первичных пользователей Pd и вероятность ложной тревоги Рf имеют важное значение для оценки эффективности обнаружения и определяются как [2, с.3]: (1).

Адаптивная фильтрация коррелированных помех

При этом эффективность системы обработки в целом, например, средняя вероятность правильного обнаружения полезного сигнала, оценивается путём усреднения величины D правильного обнаружения по неизвестному параметру FsT [1].

Методы моделирования случайных процессов | Статья в журнале...

Ключевые слова: статистическое моделирование, случайные величины, стохастические процессы.

Моделирование гауссовского белого шума.

М., «Наука», 1965. 227с. 3. Шведов А. С. Теория вероятностей и математическая статистика.

Разработка математической модели канала связи с белым...

Исследование эффективности правильного обнаружения сигналов... Запишем наблюдения как смесь реализации дважды стохастического процесса и белого шума, а также сигнала в соответствующей области: , , где − случайные величины (СВ)...

Корреляционные методы пеленгования источников излучения

При выполнении численного моделирования были приняты следующие допущения: шум

3. Ермолаев В. Т., Флаксман А. Г. Методы оценивания параметров источников сигналов и помех, принимаемых антенной

Генерация расчетных сейсмических воздействий по заданным...

Устранение полосового шума и зарисовывание пропущенных...

где, ответный сигнал однородной области изображения, вычисляемый усреднением пикселей в пределах окна заданного размера; компонент

полосовой шум, дистанционное зондирование, пиксели, апостериорная вероятность, модель Хубера-Маркова, зарисовывание изображения.

Эквалайзирование канала данных системы LTE... | Молодой ученый

W — вектор белого гауссова шума. Выделение RS и оценка канала: В приемнике генерируется такой же опорный сигнал, как и в передатчике.

Рис. 2. Вероятность битовой ошибки в зависимости от отношения сигнал/шум: а — модуляция BPSK; б — модуляция QPSK; в...

Улучшение спектрального разрешения при использовании...

С целью оценки эффективности первого и предлагаемого второго методов проведём статистическое моделирование, основанное на спектральном анализе

Первый метод даёт выигрыши при значительном превышении уровня полезного сигнала над шумом (b>5 дБ).

Задать вопрос