Математическая обработка некоторых результатов маркшейдерско-геодезических измерений. Корреляция и регрессия
Автор: Темирбеков Нурсултан Алтынбекович
Рубрика: 1. Математика
Опубликовано в
XXXIX международная научная конференция «Исследования молодых ученых» (Казань, май 2022)
Дата публикации: 21.05.2022
Статья просмотрена: 131 раз
Библиографическое описание:
Темирбеков, Н. А. Математическая обработка некоторых результатов маркшейдерско-геодезических измерений. Корреляция и регрессия / Н. А. Темирбеков. — Текст : непосредственный // Исследования молодых ученых : материалы XXXIX Междунар. науч. конф. (г. Казань, май 2022 г.). — Казань : Молодой ученый, 2022. — С. 1-6. — URL: https://moluch.ru/conf/stud/archive/445/17205/ (дата обращения: 16.01.2025).
Изучение реальных процессов обычно предполагает наблюдение за целым рядом случайных величин. Исключительный интерес для широкого класса задач представляет обнаружение взаимных связей между двумя и более случайными величинами. Например, существует ли связь между курением и ожидаемой продолжительностью жизни или между умственными способностями и успеваемостью. В инженерных применениях такие задачи обычно сводятся к установлению связи между некоторым предполагаемым возбуждением и наблюдаемым откликом изучаемой физической системы. Корреляционно-регрессионный анализ подразумевает всестороннее исследование корреляционных связей, в том числе нахождения уравнении регрессии, измерение тесноты связи и определения ее направления, а также определение возможных ошибок.
Ключевые слова: корреляция, регрессия, триангуляция, критерий Фишера.
Введение
В связи с научно-техническим прогрессом, начавшимся в середине ХХ века, отмечается активное применение математических методов исследования во всех без исключения науках. Математическое мышление стало очень важным для ученых всех специальностей, в том числе и для маркшейдеров, геодезистов.
Развитие новых разделов математики, специально предназначенных для изучения сложных динамических систем, и накопленный опыт их использования в геологии облегчили внедрение математических методов в маркшейдерское дело.
До сих пор еще в маркшейдерском деле наиболее широко используются вероятностно-статистические методы, используемые для анализа протоколов геодезических и геолого-маркшейдерских измерений, встречающихся при развитии сетей обоснования, маркшейдерских съемках, исследовании инструментов и приборов, обработке геолого-разведочных данных, при геометризации месторождений полезных ископаемых. Целью данной работы является рассмотрения применения математических методов исследования статистических данных для решения вопросов горного дела.
Понятие о статистических связях
Существует две формы зависимости между величинами Х и Y: функциональная и статистическая или вероятностная.
— Функциональной зависимостью между двумя величинами Х и Y называют такую зависимость, при которой каждым значениям Х соответствуют значения Y, которые можно точно указать.
— Статистической зависимостью между величинами Х и Y называют такую зависимость, при которой каждому значению Х соответствует распределение значений Y, изменяющееся вместе с изменением Х. Частным случаем статистической связи является прямолинейная корреляционная зависимость, при которой с изменением Х изменяется математическое ожидание Y по линейному закону.
— В математической статистике взаимосвязь явлений и их признаков изучают методом корреляции. Под корреляцией понимают такую связь между случайными величинами, при которой одна случайная величина реагирует на изменения другой. Теснота линейной корреляционной связи между двумя величинами Х и Y характеризуется коэффициентом корреляции
Свойства коэффициента корреляции:
— коэффициент корреляции изменяется в пределах: –1≤ r ≤+1;
— в случае, когда r <0 говорят о отрицательной корреляции, при r >0 говорят о положительной;
— если r =±1, то имеет место функциональная прямолинейная связь;
— если r =0, то между Х и Y прямолинейная корреляционная связь отсутствует. Оценка коэффициента корреляции определяется по формуле:
— Положительная корреляция между случайными величинами характеризует такую вероятностную зависимость между ними, когда при возрастании одной другая будет в среднем возрастать.
— Отрицательная корреляция характеризует такую зависимость, когда при возрастании одной из них другая в среднем будет убывать.
Для оценки надёжности коэффициента корреляции r при большом числе измерений ( n >50) применяют критерий Романовского:
Для оценки надёжности r* при малом числе измерений ( n <50)применяют критерий Фишера.
Задача 1. Втабл. 1 приведены результаты измерений триангуляции D i и абсолютные значения невязок Δ i (в секундах) их сопровождающих. Вычислить коэффициент корреляции; с вероятностью 0,90 оценить его надёжность и составить уравнение регрессии Δ на D .
Решение . Вычисление необходимых сумм, поместим в таблице ниже.
№ |
|
|
|
|
|
|
|
Примечания |
1 |
179°59'24" |
36" |
-30,4 |
18,2 |
924,16 |
331,24 |
-553,28 |
|
2 |
179°59'35" |
25" |
-19,4 |
7,2 |
376,36 |
51,84 |
-139,68 |
|
3 |
179°59'49" |
11" |
-5,4 |
-6,8 |
29,16 |
46,24 |
36,72 |
|
4 |
180°00'14" |
14" |
-40,4 |
-3,8 |
1632,16 |
14,44 |
153,52 |
|
5 |
179°59'56" |
4" |
1,6 |
-13,8 |
2,56 |
190,44 |
-22,08 |
|
6 |
180°00'26" |
26" |
31,6 |
8,2 |
998,56 |
67,24 |
259,12 |
|
7 |
180°00'3" |
3" |
8,6 |
-14,8 |
73,96 |
219,04 |
-127,28 |
|
8 |
179°59'29" |
31" |
-25,4 |
1 3 ,2 |
645,16 |
174,24 |
-3 35 , 2 8 |
|
9 |
179°59'50" |
10" |
-4,4 |
-7,8 |
19,36 |
60,84 |
34,32 |
|
10 |
180°00'18" |
18" |
23,6 |
0,2 |
556,96 |
0,04 |
4,72 |
|
|
1799°59'4" |
178" |
-60 |
0 |
5258,4 |
11 55 , 6 |
-6 89 , 2 |
Вычислим r по формуле (1), которая в данной задаче примет вид:
Оценка надёжности r.
Так как число измерений небольшое ( n =10), то для оценки надёжности применим критерий Фишера. Этот критерий основан на преобразовании вида
Величина Z* подчинена нормальному закону распределения. По таблице значений функции Лапласа, пользуясь коэффициентом корреляции r*, как аргументом, находим Z*=0,279. Доверительный интервал для истинного значения Z имеет вид
Для вероятности 0,90 по таблице интеграла вероятностей находим коэффициент t=1,645 и определяем границы доверительного интервала для Z :
Затем из таблицы находим соответствующие крайним значениям Z(-0,341; 0,899) значения границ коэффициента корреляции (-0,33 и 0,713). Получаем доверительный интервал, с вероятностью 0,90 накрывающий истинное значение коэффициента корреляции r
—0,33 0,713 4.
Составим уравнение регрессии Δ на D:
Затем по уравнению строим график. Достоинство уравнения регрессии состоит в том, что оно позволит по заданным значениям переменной D предвычислять ожидаемые в среднем значения переменной Δ.
Заключение:
Величина коэффициента корреляции определяет устойчивость связи между случайными величинами, чем ближе значение к единице, тем теснее статистическая связь. В нашей задаче коэффициент вышел отрицательный, и ближе к нулю. Это свидетельствует об отсутствии прямолинейной статистической связи. Прямая регрессия будет идти на убывание это свидетельствует об отсутствии линейной связи между явлениями. Значит невязки вышли очень грубыми, это может быть систематическими ошибками или случайными ошибками при измерении. От сюда может возникнуть необходимость измерить триангуляцию с начала.
Литература:
- Гудков В. М., Хлебников А. В. Математическая обработка маркшейдерско-геодезических измерений.-М.: Недра, 1990
- Рыжков П. А., Гудков В. М. Применение математической статистики при разведке недр.-М.: Недра, 1966.
- Русяева Е. А. Теория математической обработки геодезических измерений: учебное пособие Часть I. Теория ошибок измерений. — M.: МИИГАиК, 2016.
Похожие статьи
Значение факторного анализа в условиях оценки финансового положения коммерческого предприятия
Основные признаки конструируют по определенным алгоритмам на основе исходных, единичных признаков. Основные признаки должны быть наиболее существенными, определяющими. Именно для такого интегрирования информации и используется факторный анализ. Прове...
Об одном частном случае аналитического описания зависимости концентрационной константы устойчивости комплекса от состава водно-органического растворителя
Одной из причин наблюдаемой в эксперименте зависимости концентрационной константы устойчивости комплексного соединения от состава смешанного водно-органического растворителя является необоснованное применение закона действия масс к упрощенно отображе...
Оценка влияния выбора модели на результат недренированного расчета
Для описания механического поведения грунта в современной инженерной практике используются сложные математические модели. При этом, их создание базируется, в основном, на результатах лабораторных испытаний (компрессионных, сдвиговых, трехосных и т. д...
Применение ИКТ в геометрических и физических приложениях определённого интеграла
Выбор темы связан с информатизацией процесса обучения. Роль математического аппарата в решении задач по естественным дисциплинам нельзя переоценить. Без математической грамотности невозможно успешное освоение методов решения по физике, химии, биологи...
Решение задачи плоскорадиальной неустановившейся фильтрации упругой жидкости методом Г. П. Гусейнова с учетом влияния начального градиента
Метод «усреднения» Г. П. Гусейнова заключается в том, что в дифференциальном уравнении упругого режима производная от давления по времени усредняется по всей возмущенной области и заменяется некоторой функцией времени, значение которой определяетс...
3D-моделирование фракталов. Фрактальные антенны
Когда-то большинству людей казалось, что геометрия в природе ограничивается простыми фигурами и их комбинациями. Однако природные системы и их динамика могут быть весьма сложными. Например — модель горного хребта, легких человека, системы кровообраще...
Теоретическая сущность усреднения техногенного сырья
Усреднение техногенного сырья является процессом, направленным на уменьшение вариаций в качестве сырья путем объединения и перемешивания различных порций. Этот метод позволяет выравнивать показатели качества, такие как содержание полезных компонентов...
Закон обратных квадратов: теория и эксперимент
В данной работе представлены результаты исследований закона обратных квадратов. На примере закона всемирного тяготения логически проанализирован характер закона обратных квадратов. Экспериментальное подтверждение закона реализовано с помощью исследов...
Установки для аэродинамического эксперимента
Аэродинамическим экспериментом называют моделирование течений воздуха и их взаимодействие с исследуемыми объектами с целью изучения. При решении задач аэродинамики теоретические методы не всегда позволяют получить достоверные результаты, поскольку ма...
Изучение взаимосвязи механических и электрических процессов исследуемого электромагнитного вибровозбудителя
В статье рассматриваются результаты исследования электромагнитного вибровозбудителя с последовательно включенным конденсатором в электрическую цепь, состоящей из механической и электрической подсистем. Показано, что с помощью уравнения Лагранжа — Мак...
Похожие статьи
Значение факторного анализа в условиях оценки финансового положения коммерческого предприятия
Основные признаки конструируют по определенным алгоритмам на основе исходных, единичных признаков. Основные признаки должны быть наиболее существенными, определяющими. Именно для такого интегрирования информации и используется факторный анализ. Прове...
Об одном частном случае аналитического описания зависимости концентрационной константы устойчивости комплекса от состава водно-органического растворителя
Одной из причин наблюдаемой в эксперименте зависимости концентрационной константы устойчивости комплексного соединения от состава смешанного водно-органического растворителя является необоснованное применение закона действия масс к упрощенно отображе...
Оценка влияния выбора модели на результат недренированного расчета
Для описания механического поведения грунта в современной инженерной практике используются сложные математические модели. При этом, их создание базируется, в основном, на результатах лабораторных испытаний (компрессионных, сдвиговых, трехосных и т. д...
Применение ИКТ в геометрических и физических приложениях определённого интеграла
Выбор темы связан с информатизацией процесса обучения. Роль математического аппарата в решении задач по естественным дисциплинам нельзя переоценить. Без математической грамотности невозможно успешное освоение методов решения по физике, химии, биологи...
Решение задачи плоскорадиальной неустановившейся фильтрации упругой жидкости методом Г. П. Гусейнова с учетом влияния начального градиента
Метод «усреднения» Г. П. Гусейнова заключается в том, что в дифференциальном уравнении упругого режима производная от давления по времени усредняется по всей возмущенной области и заменяется некоторой функцией времени, значение которой определяетс...
3D-моделирование фракталов. Фрактальные антенны
Когда-то большинству людей казалось, что геометрия в природе ограничивается простыми фигурами и их комбинациями. Однако природные системы и их динамика могут быть весьма сложными. Например — модель горного хребта, легких человека, системы кровообраще...
Теоретическая сущность усреднения техногенного сырья
Усреднение техногенного сырья является процессом, направленным на уменьшение вариаций в качестве сырья путем объединения и перемешивания различных порций. Этот метод позволяет выравнивать показатели качества, такие как содержание полезных компонентов...
Закон обратных квадратов: теория и эксперимент
В данной работе представлены результаты исследований закона обратных квадратов. На примере закона всемирного тяготения логически проанализирован характер закона обратных квадратов. Экспериментальное подтверждение закона реализовано с помощью исследов...
Установки для аэродинамического эксперимента
Аэродинамическим экспериментом называют моделирование течений воздуха и их взаимодействие с исследуемыми объектами с целью изучения. При решении задач аэродинамики теоретические методы не всегда позволяют получить достоверные результаты, поскольку ма...
Изучение взаимосвязи механических и электрических процессов исследуемого электромагнитного вибровозбудителя
В статье рассматриваются результаты исследования электромагнитного вибровозбудителя с последовательно включенным конденсатором в электрическую цепь, состоящей из механической и электрической подсистем. Показано, что с помощью уравнения Лагранжа — Мак...