Психология и теория автоматов | Статья в сборнике международной научной конференции

Автор:

Рубрика: 1. Общие вопросы психологии

Опубликовано в

III международная научная конференция «Психология: традиции и инновации» (Самара, март 2018)

Дата публикации: 28.11.2017

Статья просмотрена: 34 раза

Библиографическое описание:

Мясоедов А. И. Психология и теория автоматов [Текст] // Психология: традиции и инновации: материалы III Междунар. науч. конф. (г. Самара, март 2018 г.). — Самара: ООО "Издательство АСГАРД", 2018. — С. 1-3. — URL https://moluch.ru/conf/psy/archive/255/13303/ (дата обращения: 17.10.2018).



Человек работает в условиях среды, состоящей из очень большого числа элементов. С другой стороны, человек — это система с конечной памятью, его мозг построен из большого, но тоже конечного числа элементов. Поэтому, исходя из понятий кибернетики, его можно рассматривать как конечный автомат. И здесь возникает серьезное противоречие: конечный автомат оказывается способным работать в бесконечной среде [1].

Известно, что в кибернетике автоматами называют предназначенные для переработки информации устройства, в которых существует определенная зависимость между состояниями входов и выходов. Эти устройства работают на основе принципа «стимул-реакция»: то или иное поступающее на вход воздействие соотносится с памятью и определяет ответ выходных устройств автомата.

Обычно рассматриваются два типа автоматов — детерминированные, в которых соотношение между стимулом и реакцией однозначно определено внутренними состояниями автомата, и вероятностные, дающие ответы на стимулы с разной степенью вероятности. При этом подчеркивается, что конечный автомат может реагировать только на определенное конечное число стимулов, а это зависит от объема его памяти. В связи с этим и делается вывод, что подобный автомат может действовать лишь через перебор вариантов [2].

Однако при этом забывают, что в условиях бесконечного числа ситуаций такой принцип работы неэффективен. К тому же автоматам, построенным по принципу «стимул-реакция», свойственен и другой существенный недостаток. Они требуют определенности стимула: чтобы можно было реагировать на тот или иной стимул, он должен быть точно определен. Но ведь существуют такие ситуации, в которых нет и не может быть дана заранее однозначная характеристика стимула [3].

Это те ситуации, которые представлены разрозненными элементами. В этом случае стимулом не может быть ни один элемент ситуации в отдельности. Человек, решающий задачу не реагирует на тот или иной отдельный элемент, а должен выработать стратегию относительно всей ситуации. Поэтому для работы в условиях такой разобщенности элементов автомат должен соответствующим образом преобразовывать эту совокупность элементов в некоторое единое целое, в определенный стимул, в ответ на который следует та или иная стратегия.

Поскольку в существующих автоматах такой преобразователь отсутствует, они не могут работать в условиях дискретной, разобщенной среды. Человек же, попадающий в подобную ситуацию, связывает между собой разрозненные элементы, организует и формирует то, что называют оперативно-информационной моделью, например, шахматной позиции. Именно эта модель и является для человека стимульной ситуацией, определяющей выработку стратегии. Но этого мало. Благодаря способности к выработке оперативно-информационной модели ситуации человек получает свойства бесконечного автомата (при конечном числе элементов, составляющих его мозг, и объеме памяти), которые возвышают его существующими кибернетическими устройствами и позволяют ему разумно, успешно работать в условиях бесконечной среды [4].

В качестве примера, подтверждающее это положение, приведем какую-нибудь систему шахматных фигур, созданную или усвоенную человеком. Возьмем, например, идею связки фигур. Она состоит в следующем: если между королем и атакующей его фигурой противника стоит «своя» фигура, то эту фигуру убирать нельзя, иначе король окажется под шахом. Эта фигура становится как бы связанной; она не может быть использована для дальнейших действий. Таким образом, здесь имеет место определенный тип связи между фигурами. При этом характерно, что фигуры, образующие такую систему, могут стоять в самых различных местах доски: их расположение не повлияет на характер связи между ними. Больше того, в одной позиции нападающей фигурой может быть слон, а в другой — ладья, в одной позиции связанной фигурой будет ферзь, в другой — конь и т. д. Независимо от местоположения и названия фигур, если они взаимодействуют определенным образом, на доске будет иметь место ситуация связки.

Нетрудно увидеть, что уже этим простым типом связи можно описать огромное число конкретных позиций, а это способствует выработке разумных стратегий в условиях таких позиций.

Кибернетика пасует перед астрономическим числом возможных конкретных сочетаний шахматных фигур на доске, включающей 8 X 8 полей. А что будет, если мы начнем увеличивать число полей доски, например, возьмем доску, состоящую из 10 X 10 или 50 X 50 полей? А если при этом увеличивать и число фигур, например, ввести при одном короле восемь слонов, десять коней, четыре ферзя и т. д.? Если в распоряжении автомата будут оперативно-информационные системы, а главное — принцип их образования, то для него не окажется столь уж существенной величина среды, в которой ему придется работать. Так, идея связки «сработает» и на доске из 100 X 100 полей, в каком бы районе этой доски ни находились включенные в эту систему фигуры. При увеличении числа полей и числа фигур количество конкретных позиций, описываемых оперативно-информационными системами, может возрастать до бесконечности [5].

Существует еще одна проблема, в решении которой технической кибернетике сможет помочь эвристика. Это — создание самообучающихся систем. Под ними понимают устройства, для которых не требуется предварительного математического описания последовательности действий и объекта управления. Системы эти могут состоять из очень большого числа элементов, обладающих вначале неопределенными функциями. В такой системе начальной организации принципиально не требуется: порядок как бы сам возникает из хаоса в процессе самоорганизации (самообучения). Часто подчеркивается, что эти системы в определенном отношении могут превзойти человека, создавшего их. Возьмем, например, инженера, который создаст диагностическую машину, работающую эффективно. Машина легко превзойдет своего создателя в смысле специальных знаний.

Существует, однако, и другая концепция, которая утверждает, что все элементы системы (включая и объект управления) должны быть, хорошо изучены (алгоритмизированы), надежны и с самого начала наделены определенными функциями. С этой точки зрения необходима высокая начальная организация системы, причем последняя никогда не может превзойти своего учителя — человека. Эти две концепции не являются антагонистическими: они отражают лишь два разных типа систем, каждый из которых может иметь место [6].

В работах по кибернетике указывается, что способностью создавать новые схемы действия, т. е. самообучением, обладают только некоторые системы с обратной связью. К ним относятся, например, системы типа «перцептрон».

Перцептрон — это предложенная Ф. Розенблаттом классическая модель мозга, обладающая свойствами обучения и самообучения. В настоящее время это название применяется к определенному классу систем. Перцентроны могли самостоятельно, без помощи человека, распознавать и классифицировать входные сигналы по признакам, которые не заданы заранее. Основными составными частями перцептрона являются экран, состоящий из фотоэлементов, и связанные с ними ассоциирующие элементы. Возбуждение, падающее на экран, передается ассоциирующим элементам, которые посылают сигналы элементам исполнительным. В ходе обучения машины распознаванию, например, букв определенные фотоэлементы, возбужденные данной буквой, «подкрепляются», а возбуждения, не относящиеся к этой букве, «наказываются». В результате таких опытов машина дифференцирует одну букву от другой [7]

Существуют и другие системы, которые совершенствуют способы действия при решении определенных задач. При этом во многих системах перебор вариантов рассматривается как фактор, определяющий путь самообучения. Он выступает в нескольких формах. Принцип полного перебора, реализованный в таких устройствах, как мышь Шеннона и др., считается не очень хорошим с точки зрения самообучения, лишь некоторым первоначальным его этапом.

Более интересны в этом отношении такие формы перебора вариантов, в которых испытываются лишь некоторые варианты возможных решений. К таким формам можно отнести статистический просчет. Он реализуется, например, в системах, действующих с учетом вероятности успеха.

Самообучение таких систем состоит в том, что, учитывая опыт предыдущей работы, они опробуют в первую очередь наиболее перспективные решения или отбрасывают заведомо негодные, не пытаясь искать решения там, где они до сих пор его никогда не находили.

К указанным системам следует прибавить и устройство, сыгравшее большую роль в развитии кибернетики, — гомеостат Эшби, который находит устойчивое положение на основе случайных, хаотических движений.

Характерно, что устройства подобного типа, как и типа «перцептрон», не считались никогда перспективными. Они выступают как другая крайность по сравнению с детерминированными системами, в которых точно описан управляемый объект и способы управления. Основная линия развития самообучающихся систем может быть связана с комбинированными устройствами, включающими, с одной стороны, фиксированные, заранее данные элементы, а с другой — подсистему, которая, на основании этих фиксированных элементов, способна решать задачи, относительно которых алгоритм отсутствует [2].

Именно такого рода системой, включающей готовые способы действия и в то же время способной формировать новые способы в процессе решения задач, может считаться человек. И естественно поэтому, что для разработки теории самообучающихся систем представляет интерес материал, связанный с самообучением человека.

Многие психологи подчеркивали роль процесса решения задач для саморазвития, для выработки новых, отсутствующих ранее форм поведения, адекватных определенным условиям среды.

Действительно, ведь у той или иной кибернетической в широком смысле системы (человек, животное) возникают самостоятельно новые формы поведения. Если имеет место процесс обучения, то здесь все ясно: учитель специальными методами передает имеющиеся у него способы действия. Но если система предоставлена самой себе, если она должна сама прийти к определенному выводу, то у нее нет никакого другого способа, кроме эвристической деятельности, кроме процесса решения задач. Разумеется, новая форма поведения может возникнуть случайно, но и случай используется обычно именно потому, что существует задача, некоторая цель, которую нужно достигнуть.

С точки зрения психологии творческого мышления принципиальный путь самообучения кратко может быть выражен следующим образом. Перед человеком возникает задача, по отношению к которой у него отсутствуют стратегия, способ действия и т. д. Человек решает эту задачу на основе моделирования ее условий и создает недостающую стратегию [8]. Стратегия эта запоминается им и, при возникновении аналогичной ситуации, срабатывает. В результате самообучения те или иные ситуации перестают быть проблемными и не требуют в дальнейшем специального решения.

Литература:

1 Левин, В. И. Введение в динамическую теорию конечных автоматов /В. И. Левин. — Рига: Зинатне, 1975. — 376 с.

2 Рогшстй B. H. Основы дискретной автоматики. М.: Связь, 1975. 4З0 с.

3 Karnopp, D. An approach to derivative causality in bond graph models of mechanical systems [Text] / D. Karnopp // J. of the Franklin Institute. — 1992. -vol. 329, № 1. — Р. 65–75.

4 Хопрофт, Д. Введение в теорию автоматов, языков и вычислений. /Д. Хопкрофт, Р. Мотвани, Д. Ульман. -М.: Вильямс, 2002. — 528 с.

5 Левин, В. И. Бесконечнозначная логика и переходные процессы в конечных автоматах / В. И. Левин // Автоматика и вычисл. техника. — 1972. — № 6. — С. 54–65

6 Guo, G. Optimum dynamic design of planar linkage using genetic algorithms [Text] / G. Guo, N. Mo-rita, T. Torii // JSME Int. J. C. — 2000. — vol. 43, № 2. — P. 372–377.

7 Розенблатт Ф. Принципы нейродинамики. Перцептроны и теория механизмов мозга. Пер. с англ. Под ред. С. М. Осовца. М. Мир 1965г. 480 с.

8 Барабанщиков, В. А. (2010) Введение. Психология и математика. В кн. А. Л. Журавлев, Т. Н. Савченко, Г. М. Головина (ред.), Математическая психология: Школа В. Ю. Крылова (11–13). М.: Изд-во «Институт психологии РАН».

Основные термины (генерируются автоматически): система, форма поведения, фигура, способ действия, эта, конечный автомат, процесс решения задач, перебор вариантов, конечное число элементов, бесконечная среда.

Похожие статьи

Методы задания автоматов | Статья в журнале «Молодой ученый»

Методы задания автоматов. Для задания конечного автомата S требуется описать все элементы множества S={A, Z, W, δ, λ}. Наиболее часто используемой формой описания элементов множества S используется табличный, графический, матричный способы.

Применение автомата Мура для решения элементарных...

ввод данных, данные, переход, конечный набор, расширенный конечный автомат, приложение, действие, решение этой, пользовательский интерфейс, операционная система, общий случай, элемент.

Визуализация комбинаторных задач теории вероятностей

Все объекты задачи состоят из отдельных дискретных элементов; Множества этих элементов конечны.

К неформальным способам решения комбинаторных задач относят непосредственный перебор.

Расширенный конечный автомат для тестирования мобильных...

ввод данных, данные, переход, конечный набор, расширенный конечный автомат, приложение, действие, решение этой, пользовательский интерфейс, операционная система, общий случай, элемент.

Теория игр: основные понятия, типы игр, примеры

Возможный способ действия игрока или коалиции называется Стратегией игрока [3]. В процессе игры каждый участник выбирает свою

Игра называется конечной, если каждый игрок имеет конечное число возможных стратегий, и бесконечной — в противном случае.

Обобщенный способ рассуждения при решении математической...

Учащиеся при этом включаются в процесс решения учебных задач, результатом решения которых является уяснение ученикомобщего способа

Нередко это наблюдается при частично открытой форме задания последней. В действиях учителя непреднамеренно происходит...

Алгоритмы расщепления для задачи о пропозициональной...

Задача о пропозициональной выполнимости (англ. вариант — SATISFIABILITY, или SAT) имеет следующую формулировку [1]. Пусть X — это конечное

Формула F в конъюнктивной нормальной форме (КНФ) является конъюнкцией конечного числа клозов, где клоз — это...

Ситуационная задача как один из современных методических...

Кроме того, учащиеся в процессе решения ситуационной задачи

Решение таких задач в конечном итоге приведет к развитию мотивации учащихся к познанию

По своему содержанию данные задачи направлены на выявление и осознание способа деятельности.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Методы задания автоматов | Статья в журнале «Молодой ученый»

Методы задания автоматов. Для задания конечного автомата S требуется описать все элементы множества S={A, Z, W, δ, λ}. Наиболее часто используемой формой описания элементов множества S используется табличный, графический, матричный способы.

Применение автомата Мура для решения элементарных...

ввод данных, данные, переход, конечный набор, расширенный конечный автомат, приложение, действие, решение этой, пользовательский интерфейс, операционная система, общий случай, элемент.

Визуализация комбинаторных задач теории вероятностей

Все объекты задачи состоят из отдельных дискретных элементов; Множества этих элементов конечны.

К неформальным способам решения комбинаторных задач относят непосредственный перебор.

Расширенный конечный автомат для тестирования мобильных...

ввод данных, данные, переход, конечный набор, расширенный конечный автомат, приложение, действие, решение этой, пользовательский интерфейс, операционная система, общий случай, элемент.

Теория игр: основные понятия, типы игр, примеры

Возможный способ действия игрока или коалиции называется Стратегией игрока [3]. В процессе игры каждый участник выбирает свою

Игра называется конечной, если каждый игрок имеет конечное число возможных стратегий, и бесконечной — в противном случае.

Обобщенный способ рассуждения при решении математической...

Учащиеся при этом включаются в процесс решения учебных задач, результатом решения которых является уяснение ученикомобщего способа

Нередко это наблюдается при частично открытой форме задания последней. В действиях учителя непреднамеренно происходит...

Алгоритмы расщепления для задачи о пропозициональной...

Задача о пропозициональной выполнимости (англ. вариант — SATISFIABILITY, или SAT) имеет следующую формулировку [1]. Пусть X — это конечное

Формула F в конъюнктивной нормальной форме (КНФ) является конъюнкцией конечного числа клозов, где клоз — это...

Ситуационная задача как один из современных методических...

Кроме того, учащиеся в процессе решения ситуационной задачи

Решение таких задач в конечном итоге приведет к развитию мотивации учащихся к познанию

По своему содержанию данные задачи направлены на выявление и осознание способа деятельности.

Задать вопрос