Возможности использования образовательной робототехники в преподавании физики | Статья в сборнике международной научной конференции

Библиографическое описание:

Ершов М. Г. Возможности использования образовательной робототехники в преподавании физики [Текст] // Проблемы и перспективы развития образования: материалы IV Междунар. науч. конф. (г. Пермь, июль 2013 г.). — Пермь: Меркурий, 2013. — С. 81-87. — URL https://moluch.ru/conf/ped/archive/72/4129/ (дата обращения: 24.09.2018).

В последние годы в Российском образовании всё более популярной становится образовательная робототехника. Сотни школ используют конструкторы нового поколения в дополнительном и основном образовании. Многие практики робототехники рассматривают образовательную робототехнику как новую педагогическую технологию, направленную на приобщение детей и молодёжи к техническому творчеству, развитию навыков конструирования, моделирования и программирования.

Во многих регионах России образовательная робототехника успешно развивается на протяжении уже нескольких лет. Среди таких регионов Московская область, Санкт-Петербург, Архангельск, Челябинск, Екатеринбург, Курган, Нижний Новгород, Новосибирск и многие другие. Робототехника становится сегодня популярным и эффективным средством в изучении информатики, физики, технологии, химии, биологии и других предметов, что позволяет достигать высоких результатов в обучении и мотивации школьников к выбору профессий инженерно-технического профиля.

До недавнего времени робототехника развивалась, в основном, в качестве внеклассной формы работы. Большинство публикаций посвящалось анализу опыта этой работы. В настоящее время пока не проводятся специальные исследования по использованию робототехники в учебном процессе, в частности по физике. Вместе с тем в связи с требованиями ФГОС имеются возможности для модернизации преподавания физики с применением робототехнических наборов. Опыт работы МАОУ «СОШ № 135» г. Перми, совместно Кафедрой мультимедийной дидактики и информационных технологий обучения Пермского государственного гуманитарно-педагогического университета в течение последних двух лет позволяет сформулировать подходы к формированию методики использования робототехники в преподавании физики, а также проанализировать и обобщить опыт работы российских коллег в направлении использования робототехники в учебном процессе.

Мы определяем следующие педагогические цели использования робототехники в преподавании физики:

1)                           демонстрация возможностей робототехники как одного из ключевых направлений научно-технического прогресса;

2)                           демонстрация роли физики в проектировании и использовании современной техники;

3)                           повышение качества образовательной деятельности:

-        углубление и расширение предметного знания,

-        развитие экспериментальных умений и навыков,

-        совершенствование знаний в области прикладной физики,

-        формирование умений и навыков в сфере технического проектирования, моделирования и конструирования;

4)                           развитие у детей мотивации изучения предмета, в том числе познавательного интереса;

5)                           усиление предпрофильной и профильной подготовки учащихся, их ориентация на профессии инженерно-технического профиля.

В связи с появлением новых возможностей в организации учебного процесса с использованием роботов можно выделить следующие компоненты учебного процесса, в которых появляется робототехника:

1.                  Урочные формы работы: измерения, проектные работы, демонстрационный эксперимент, лабораторные работы, сообщения, практикумы.

2.                  Элективные курсы, клубная и кружковая формы работы.

3.                  Исследования, проектная работа, участие в НПК, конкурсах, включая дистанционные и сетевые формы.

При этом, по нашему мнению, школьник должен иметь возможность самоопределиться в выборе уровня знакомства с робототехникой. Либо ему будет достаточно базового уровня, который предполагает в основном урочные формы работы, либо он будет знакомиться с робототехникой по расширенному или углублённому варианту, выбирая элективные курсы, проекты и другие формы (рис. 1).

Рис.1. Уровни знакомства с робототехникой в процессе изучения физики

Для наиболее полного достижения поставленных целей использования робототехники, роботы в школьном курсе физики должны быть представлены не только как средство практической деятельности школьников, но и как объект теоретического изучения. Большинство датчиков робототехнических наборов, а также исполнительных элементов роботов имеют физические принципы действия, которые изучаются в школьном курсе физики, поэтому, например, при изучении соответствующих тем целесообразно акцентировать внимание на практическое использование законов в современной технической области. Таким образом, нами предлагается следующая система использования учебных роботов в предметной области физики:

Робот как объект изучения

Изучение принципа работы элементной базы робота

Датчики, приводы (электропривод, гидропривод, пневмопривод), светоиндикация, механические передачи, параметры электрических цепей робототехнического оборудования и др.

Роль робота в современных научных исследованиях

Космические исследования, исследования глубин, радиационная разведка, исследование микромира и др.

Роль робота в проектировании и использовании современной техники

Промышленные роботы, роботы на транспорте, использование роботов в экстремальных условиях, медицине, сфере услуг.

Робот как средство изучения

Робот как средство измерения

Использование датчиков базового конструктора и совместимых датчиков (Vernier, HiTechnic и др.) Конструктор используются как измерительная система с обработкой и фиксацией результатов в различных видах.

Робот как средство постановки автоматизированного эксперимента

·              Сборка демонстрационных и лабораторных установок из робототехнического оборудования

·              Интеграция оборудования кабинета физики и робототехнического оборудования

Робот как средство моделирования

·          Моделирование промышленных, бытовых, транспортных и других видов устройств;

·          моделирование явлений природы.

Робот как средство творческого проектирования

Робот как средство технической модернизации существующих устройств

Совместное использование роботов с другими системами, адаптация робота к новым условиям.

Проектирование новых роботизированных устройств

Проектирование новых видов датчиков и других систем, вымышленных устройств из будущего и др.

В некоторых направлениях представленной системы имеются достаточно интересные методические наработки как у нас в стране, так и за рубежом. В последние годы появилось достаточно много публикаций, знакомящих с опытом внедрения робототехники в учебный процесс. Вместе с тем, ряд учебных пособий по организации курсов и кружков и других видов внеклассной работы также может быть полезен при организации предметной работы по физике.

Первые отечественные работы в области образовательной робототехники относятся к началу 90-х годов. В частности, в учебном пособии для 8–9 классов средней школы АП. Алексееваидр. «Робототехника» [1] изложен теоретический материал по робототехнике и система практических занятий для построения самодельного робота. Книга предназначена для школьных объединений (кружков, факультативов), занимающихся конструированием автоматизированных систем. В учебном пособии можно выделить идеи, которые будут полезны для целей использования робототехники в изучении физики на современном этапе.

Первая: раздел «Анатомия промышленного робота имеет подробное описание механических принципов функционирования манипуляторов и движущихся роботов.

Вторая: в параграфе «Приводы промышленных роботов» описаны принципы функционирования пневматического, гидравлического и электрического приводов. Подробно раскрыты физические принципы действия каждого из них, приведены примеры экспериментов, поясняющих физическое содержание, а также описаны стенды, произведённые для изучения приводов. Дополнительно имеются сведения о редукторах и датчиках, а также описаны механические передачи, электромеханические элементы (кнопки, переключатели), электрические схемы логических элементов, электроизмерительные приборы, электромагнитные устройства, программируемые контроллеры.

Третья: в пособии раскрываются физические принципы работы некоторых видов датчиков, а также система управления учебного робота 90-х годов: электронные элементы и узлы робота от полупроводниковых приборов до микросхем, рассмотрена работа электропривода с ЧПУ для учебного робота.

В заключительной части учебного пособия содержится описание использования промышленных роботов, роботов предназначенных для работы в экстремальных условиях и перспективы развития робототехники.

Книга Боголюбова А. Н. и Никитина Д. А. «Популярно о робототехнике» [2] написана для широкого круга читателей, интересующихся вопросами развития автоматики и робототехники. В книге в популярной форме изложены фундаментальные вопросы робототехники, а также вопросы физического и математического моделирования роботов. В плане использования книги в преподавании физики можно отметить три аспекта:

Первый аспект: раскрываются вопросы инженерной психологии и взаимодействия машины и человека. Описана взаимосвязь работы создателей роботов и биокибернетиков в середине XX века, дан анализ развития теории биологического моделирования (на основе работ Н. А. Умова, Д. А. Гольдгаммера, А. В Немилова).

Второй аспект: описаны физические принципы кибернетических процессов и элементов. Например, дана физическая трактовка датчика и элемента воздействия на систему (исполнительный механизм). Под датчиком предлагается понимать любой элемент, который позволяет прямо или косвенно обнаруживать знак и величину изменения какого-либо физического параметра системы. А под элементом воздействия — все, что прямо или косвенно может воздействовать на объект доступными нам материальными способами или средствами. Ещё один пример, который раскрывает физический смысл очень распространённого на сегодняшний день устройства — сервомеханизма: «Основная функция сервомеханизма заключается в создании переменного выходного сигнала y(t) той же функциональной формы, какой обладает и переменный входной сигнал x(t) стем условием, что энергия, связанная с выходным сигналом, должна заимствоваться из местного источника, а не поставляться непосредственно входным сигналом, т. е. y(t)=kx(t).Таким образом, сервопривод является усилителем с обратной связью, в котором причина, приводящая систему в действие, зависит от следующей комбинации входного и выходного сигналов: ε(t)=kx(t)-у(t)».

Третий аспект: описана история развития автоматизации производства с 30-х по 60-е годы XX столетия в нашей стране и в США, а также теория систем регулирования (Г. В. Щипанов). Самые различные примеры автоматизации, возникшие в это время можно встретить в окружающей жизни. Например, рассматриваются разомкнутая и замкнутая системы регулирования (отличаются наличием и отсутствием наблюдателя, участвующего в регулировании). Эти процессы в истории развития автоматики назывались процессами управления и регулирования. Приведён пример работы системы стабилизации температуры в помещении. Рассмотрены автоматические технические устройства до появления робототехники, которые состояли из следующих функциональных элементов: датчика, который выявляет воздействие; логики, сравнивающей регулируемую величину с заданным значением; усилителя и сервопривода. Сервопривод и усилитель активизируют связи и управляют исполнительным устройством. Первые системы автоматизации устанавливались на паровые поршневые машины, затем паровые турбины, двигатели внутреннего сгорания, а впоследствии и электрические машины.

Интенсивное развитие образовательной робототехники началось с появления в 1998 году специализированных робототехнических наборов компании LEGO под названием LEGO Mindstorms с программируемым блоком RCX. В 2006 году начался выпуск второго поколения LEGO Mindstorms с блоком NXT, а в 2013 году третьего поколения с блоком EV3. На сегодняшний день в продаже имеется около десятка различных робототехнических конструкторов различных производителей для различного возраста школьников и студентов.

Автор книги «Робототехника для детей и родителей» [3] Сергей Александрович Филиппов является учителем информатики и робототехники физико-математического лицея № 239 г. Санкт-Петербурга. Достаточно популярная во многих регионах России книга написана для детей, начинающих работать с конструкторами, руководителей кружков, родителей. В книге изложены основы конструирования на основе конструктора Lego Mindstorms, программирования на языках NXT-G, Robolab и RobotC, элементы теории автоматического управления, а также описаны принципы работы и программы некоторых базовых конструкций роботов для соревнований. В 2013 году в продаже появилось третье издание книги.

В публикации старшего научного сотрудника Центра развития образования ИПКиПРО Курганской области Дмитрия Алексеевича Каширина «Использование конструктора LEGO «Технология и физика» в учебной и внеурочной деятельности в общеобразовательных учреждениях» [4] рассматриваются возможности мобилизации исследовательской деятельности в области изучения классической механики и основ магнетизма при использовании образовательного конструктора «Технология и физика» (комплект Lego 9632). Каширин Д. А. отмечает, что «Конструктор может быть использован в демонстрационном и лабораторном эксперименте, а также при решении экспериментальных задач и проектной деятельности. Например, при изучении следующих тем: равномерное и неравномерное движение, инерция, сила, простые механизмы, энергия и д. р. Это возможно благодаря тому, что можно собрать из одного комплекта различные установки и механизмы». Автор предлагает использовать конструктор при проведении лабораторных работ таких как, «Выявление условия равновесия рычага» и «Определение КПД при подъеме тела по наклонной плоскости». Как отмечает автор: «При этом можно использовать как стандартные измерительные приборы и материалы, например, динамометр, масштабная линейка, набор грузов известной массы, так и современные цифровые приборы, например, датчиковые системы Среды AFSTM. При этом вместо динамометра можно использовать датчик силы, а масштабная линейка может быть заменена датчиком расстояния. В этом случае эксперимент получится наглядным, интересным…».

В учебном практикуме для 5–6 классов «Первый шаг в робототехнику» Копосова Дениса Геннадьевича [5], учителя информатики и ИКТ МБОУ «Средняя общеобразовательная школа № 24" города Архангельска, старшего преподавателя кафедры прикладной информатики и информатизации образования Института математики и компьютерных наук Северного (Арктического) федерального университета имени М. В. Ломоносова имеется описание физических принципов работы ряда датчиков, входящих в базовый набор Lego Mindstorms, примеры нескольких проектов, моделирующих работу измерительных приборов. К иллюстрированным описаниям работы датчиков из набора LEGO Mindstorms подобран ряд заданий на работу с конкретным видом датчиков, а также прилагаются табличные данные физического характера для сравнения (оценки) различных показателей. В учебном пособии приводятся примеры проектов, которые можно выполнить для освоения принципа работы датчика. В пособии приводятся проекты для сборки следующих измерительных приборов: тахометр, измеритель громкости, измеритель освещённости, одометр, курвиметр, спидометр, дальномер. Данный вариант практикума, к которому также разработан вариант рабочей тетради, можно рассматривать как пропедевтику изучения физики на основе базового набора Lego Mindstorms. Автор пособия в своих публикациях многократно подтверждает важную роль использования робототехнического набора в формировании физического мышления и инженерного мышления школьников наряду с использованием учебных наборов для изучения микроэлектроники. Концепция инженерной школы на базе робототехники и микроэлектроники изложена автором на сайте «Начала инженерного образования в школе» (http://www.koposov.info). Достаточно интересные идеи использования проектов по робототехнике в учебном процессе представлены Копосовым Д. Г. в цикле видеолекций издательства «Бином» «Уроки робототехники в школе»[10]

Белиовская Лидия Георгиевна, к.ф.-м.н., учитель информатики, руководитель Зеленоградской лаборатории робототехники на базе ГБОУ лицея № 1557 г. Москвы в своей книге «Программируем микрокомпьютер NXT в LabVIEW» [6] раскрывает широкие возможности языка LabVIEW для программирования микропроцессорных блоков NXT. LabVIEW используется в системах сбора и обработки данных, а также для управления техническими объектами и технологическими процессами и ориентирован на решение задач автоматизации научных исследований. При реализации творческих проектов и учебных исследований LabVIEW позволяет широко использовать дополнительное исследовательское оборудование, совместимое с конструктором LEGO Mindstorms. Использование различного рода виртуальных шкал, вывода результатов исследований в реальном времени в виде графиков, диаграмм и таблиц, а также многих других инструментов языка, включая создание интерфейса программы, позволяет сделать исследование более доступным и наглядным. Организуя уже несколько лет научно-исследовательские проекты с детьми, мотивированными к обучению математике, физике и программированию, Лидия Георгиевна в своей статье «Самостоятельный физический эксперимент в современном типовом и цифровом кабинетах физики при реализации Федерального государственного образовательного стандарта» [7]отмечает следующие возможности в организации исследовательской работы по физике с применением робототехнических наборов Lego Mindstorms и дополнительного оборудования: повышение точности измерений за счёт автоматизации, синхронизация показаний нескольких датчиков, точное позиционирование датчика в случае пространственного измерения величины. Среди примеров проектных работ можно назвать следующие: «Определение работы сил тяжести, трения, упругости», «Изучение дифракции света», «Изучение интерференции света», «Изучение силы трения», «Составление карты магнитного поля полосового магнита и соленоида».

Системность работы Министерства образования Челябинской области в направлении развития робототехники началась с приобретения робототехнических комплексов в 2007 году для каждого образовательного учреждения и поддержке Лего-движения на протяжение последних нескольких лет, что позволило сделать робототехнику массовой педагогической технологией. Вприложении № 12 к письму Министерства образования и науки Челябинской области от 03.08.2009 г. № 103/3431 «О преподавании учебного предмета «Физика» в общеобразовательных учреждениях Челябинской области в 2009–2010 учебном году» [9] содержатся рекомендации по внедрению Лего-технологий: «…Современная организация учебной деятельности требует того, чтобы теоретические обобщения учащиеся делали на основе результатов собственной деятельности. Для учебного предмета «физика» — это учебный эксперимент. Принципиально изменились роль, место и функции самостоятельного эксперимента при обучении физике: учащиеся должны овладевать не только конкретными практическими умениями, но и основами естественнонаучного метода познания, а это может быть реализовано только через систему самостоятельных экспериментальных исследований. Lego-конструкторы существенно мобилизуют такие исследования. Особенностью преподавания учебного предмета «Физика» в 2009/2010 учебном году является использование образовательных Лего-конструкторов, которые позволяют в полной мере реализовать принцип личностно-ориентированного обучения, провести демонстрационные эксперименты и лабораторные работы, охватывающие практически все темы курса физики и выполняющие не столько иллюстративную функцию к изучаемому материалу, а требующие применения исследовательских методов, что способствует повышению интереса к изучаемому предмету». В Челябинске действует центр, координирующий методическую работу по развитию робототехники в регионе. Центром организуются методические конкурсы, семинары, выпуск методических пособий, среди которых в 2011 году был выпущен сборник «Образовательная робототехника на уроках информатики и физики в средней школе: пособие для учителя» [11]авторов: Мирошина Т. Ф., Соловьева Л. Е., Могилева А. Ю., Перфирьева Л. П. Пособие содержит методические материалы по использованию образовательной робототехники на уроках физики в 7–8 классах: задачи и упражнения, тестовые задания, групповые и индивидуальные задания. Галина Васильевна Лужнова, учитель физики МАОУ СОШ № 14 г. Челябинска ведёт блог «ЛЕГО + физика» [12], в котором собран методический материал для учителей, использующих Лего-конструирование в преподавании физики, информация о семинарах, конференциях, повышении квалификации и многое другое о робототехнике. На всероссийской конференции по методике преподавания робототехники, которая состоялась 8–9 апреля 2013 года в г. Екатеринбурге, Галина Васильевна представила опыт использования специализированных наборов LEGO: «Энергия. Работа. Мощность», «Возобновляемые источники энергии», а также результаты апробации УМК по физике О. Ф. Кабардина с использованием робототехнических наборов.

Сегодня в сети Интернет появляется большое количество педагогических публикаций с опытом использования различных аспектов робототехники в учебном процессе. Интерес детей и учителей к робототехнике растёт, так же как и возможности приобретения оборудования нового поколения.

Подводя итоги, можно отметить, что возможности применения робототехнических конструкторов в учебном процессе достаточно широки и их реализация требует от учителя методической и технической подготовки. Соотнося задачи школьного образования с перспективами автоматизации и роботизации современного производства, необходимо координировать усилия образовательных учреждений, промышленных предприятий, вузов, органов управления образованием для эффективного развития технического мышления школьников, целенаправленного развития способностей инженерно-технического направления.

Литература:

1.    Алексеев А. П. и др. Робототехника: учебное пособии для 8–9 классов средней школы./А. П. Алексеев, А. Н. Богатырев, В. А. Серенко. — М., Просвещение. 1993. — 160с.

2.    Боголюбова А. Н. Популярно о робототехнике/ А. Н. Боголюбова, Д. А. Никитина, — Киев: Наук. Думка, 1989. — 200с.

3.    Филиппов С. А. Робототехника для детей и родителей./ С. А. Филиппов–3-е изд. — СПб.: Наука, 2013.

4.    Каширин Д. А. Использование конструктора LEGO «Технология и физика» в учебной и внеурочной деятельности в общеобразовательных учреждениях: Физика. Научно-методический журнал для учителей физики, астрономии и естествознания.// — N08 (944), 1–30.09.2012[Электронный ресурс]:http://ros-group.ru/PUBLICS/SINGLE/PUBLICS/4281

5.    Копосов Д. Г. Первый шаг в робототехнику: практикум для 5–6 классов. / Д. Г. Копосов, — БИНОМ. Лаборатория знаний, 2012, — 286с.

6.    Белиовская Л. Г. Программируем микрокомпьютер NXT в LabVIEW/ Л. Г. Белиовская, А. Е. Белиовский, — М: ДМК-пресс, 2013 г.

7.    Белиовская Л. Г. Самостоятельный физический эксперимент в современном типовом и цифровом кабинетах физики при реализации Федерального государственного образовательного стандарта/ Л. Г. Белиовская // Учительская газета. Независимое педагогическое издание, № 23 (10416) от 5 июня 2012 г.

8.    LEGO Mindstorms NXT: основы конструирования и программирования роботов: С сайта: learning.9151394.ru/course/view.php?id=280/ под ред. А. И. Попкова. — Томск — 2010 [Электронный ресурс].

9.    Приложение 20 к письму Министерства образования и науки Челябинской области от 03.08.2009 № 103/3431 «О преподавании учебного предмета «Физика» в общеобразовательных учреждениях Челябинской области в 2009–2010 учебном году».

10.                       Копосов Д. Г. Цикл видеолекций издательства «Бином» «Уроки робототехники в школе»/ Д. Г. Копосов Д. Г. [Электронный ресурс] //http://metodist.lbz.ru/content/video/koposov.php.

11.                       Мирошина Т. Ф., Соловьева Л. Е., Могилева А. Ю., Перфирьева Л. П. «Образовательная робототехника на уроках информатики и физики в средней школе: пособие для учителя» — Челябинск: РКЦ.

12.                       Лужнова Г. В. Лего+физика// Лего+физика http://httpwwwbloggercomprofile179964.blogspot.ru/

13.                       Ларионова Т. П. Программа элективного курса «Робототехника»: [Электронный ресурс] http://rudocs.exdat.com/docs/index-45524.htm

14.                       Белиовская Л. Г. Система LEGO Mindstorms NXT в современном физическом эксперименте: [Электронный ресурс], http://www.ros-group.ru/content/data/store/images/f_4404_28202_1.pdf

15.                       Ершов М. Г. Использование элементов робототехники при изучении физики в общеобразовательной школе. [Текст]// XXI век — время молодых. Материалы четвертой открытой научно- практической конференции студентов, аспирантов и молодых ученых 19 мая 2011г., г. Пермь: ПГПУ, 2011.- С.55- 59.2011

Основные термины (генерируются автоматически): LEGO, учебный процесс, образовательная робототехника, NXT, робототехника, физик, робот, преподавание физики, учебное пособие, работа.

Похожие статьи

Роль робототехники в образовательном процессе

LEGO, учебный процесс, образовательная робототехника, NXT, робототехника, физик, робот, преподавание физики, учебное пособие, работа. Реализация курса робототехники в общеобразовательной школе. Различные модели конструкторов Lego и робототехнические...

Обзор программируемого комплекта робототехники Lego

Образовательная робототехника — сравнительно новая область, как в технике, так и в педагогической науке и занимается проблемами организации учебного процесса и внеурочной деятельности по обучению роботам.

Развитие робототехники в школе | Статья в сборнике...

Lego роботы встраиваются в учебный процесс.

И вопрос внедрения робототехники в учебный процесс начиная с начальной школы актуален.

На уроках информатики решать задачи физики, математики и т.д. Модели Конструктора ПервоРобота NXT дают...

Робототехника: конструирование и программирование

Введение дополнительной образовательной программы «Робототехника» в школе неизбежно изменит

Овсяницкая, Л. Ю. Пропорциональное управление роботом Lego Mindstorms EV3 / Л. Ю

Основные термины (генерируются автоматически): самостоятельная работа, NXT, датчик...

LEGO, робототехника, учебный процесс, набор...

Роль робототехники в образовательном процессе. LEGO, робототехника, учебный процесс, набор, научно-технический прогресс, искусственный интеллект, образовательный процесс, внеурочная деятельность, технологическое образование, образовательная робототехника.

Возможности использования конструктора LEGO в учебном...

Во многих регионах России образовательная робототехника успешно развивается на протяжении уже нескольких лет.

В 2014 году в комплекте с оборудованием для кабинета физики в нашу школу были поставлены LEGOMINDSTORMS NXT конструкторы.

Конструкторы lego и робототехника в современном школьном...

Робототехника (от слов робот и техника; англ. robotics) — прикладная наука, занимающаяся разработкой автоматизированных технических систем.

Изучение робототехники в учебном процессе позволит применять самые передовые технологии и современные учебные...

Ключевые слова: образовательная робототехника, физика...

физика, образовательная робототехника, инженерное мышление.

Возможности использования образовательной робототехники в преподавании физики.

Поэтому, внедрение робототехники в учебный процесс и внеурочное время приобретают все большую...

Робототехника как инструмент повышения качества освоения...

LEGO, образовательная робототехника, VEX, учебный процесс, дополнительное образование, профессиональное образование, робототехническое оборудование, техническое творчество, робототехника...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Роль робототехники в образовательном процессе

LEGO, учебный процесс, образовательная робототехника, NXT, робототехника, физик, робот, преподавание физики, учебное пособие, работа. Реализация курса робототехники в общеобразовательной школе. Различные модели конструкторов Lego и робототехнические...

Обзор программируемого комплекта робототехники Lego

Образовательная робототехника — сравнительно новая область, как в технике, так и в педагогической науке и занимается проблемами организации учебного процесса и внеурочной деятельности по обучению роботам.

Развитие робототехники в школе | Статья в сборнике...

Lego роботы встраиваются в учебный процесс.

И вопрос внедрения робототехники в учебный процесс начиная с начальной школы актуален.

На уроках информатики решать задачи физики, математики и т.д. Модели Конструктора ПервоРобота NXT дают...

Робототехника: конструирование и программирование

Введение дополнительной образовательной программы «Робототехника» в школе неизбежно изменит

Овсяницкая, Л. Ю. Пропорциональное управление роботом Lego Mindstorms EV3 / Л. Ю

Основные термины (генерируются автоматически): самостоятельная работа, NXT, датчик...

LEGO, робототехника, учебный процесс, набор...

Роль робототехники в образовательном процессе. LEGO, робототехника, учебный процесс, набор, научно-технический прогресс, искусственный интеллект, образовательный процесс, внеурочная деятельность, технологическое образование, образовательная робототехника.

Возможности использования конструктора LEGO в учебном...

Во многих регионах России образовательная робототехника успешно развивается на протяжении уже нескольких лет.

В 2014 году в комплекте с оборудованием для кабинета физики в нашу школу были поставлены LEGOMINDSTORMS NXT конструкторы.

Конструкторы lego и робототехника в современном школьном...

Робототехника (от слов робот и техника; англ. robotics) — прикладная наука, занимающаяся разработкой автоматизированных технических систем.

Изучение робототехники в учебном процессе позволит применять самые передовые технологии и современные учебные...

Ключевые слова: образовательная робототехника, физика...

физика, образовательная робототехника, инженерное мышление.

Возможности использования образовательной робототехники в преподавании физики.

Поэтому, внедрение робототехники в учебный процесс и внеурочное время приобретают все большую...

Робототехника как инструмент повышения качества освоения...

LEGO, образовательная робототехника, VEX, учебный процесс, дополнительное образование, профессиональное образование, робототехническое оборудование, техническое творчество, робототехника...

Задать вопрос