Составление косвенных задач
Автор: Жуйкова Тамара Павловна
Рубрика: 4. Дошкольная педагогика
Опубликовано в
III международная научная конференция «Педагогика: традиции и инновации» (Челябинск, апрель 2013)
Статья просмотрена: 19719 раз
Библиографическое описание:
Жуйкова, Т. П. Составление косвенных задач / Т. П. Жуйкова. — Текст : непосредственный // Педагогика: традиции и инновации : материалы III Междунар. науч. конф. (г. Челябинск, апрель 2013 г.). — Т. 0. — Челябинск : Два комсомольца, 2013. — С. 46-48. — URL: https://moluch.ru/conf/ped/archive/69/3676/ (дата обращения: 20.09.2024).
В обучении решению арифметических задач условно можно выделить два взаимосвязанных этапа: ознакомление со структурой задачи, способами решения ее, и обучение приемам вычислений [1, с. 201].
Решая задачи, ребенок усваивает: смысл арифметических действий и понятия: прибавить, получится, вычесть, остаток, равно и т. д. Развивается логическое мышление, смекалка, сообразительность, совершенствуются умения проводить анализ и синтез, обобщать, выделять главное в задачи. В дошкольном образовательном учреждении дети решают как простые, так и косвенные задачи.
Исследования и практика показывают, что детям старшего дошкольного возраста доступно решение некоторых видов косвенных задач. Их можно предлагать детям, будучи уверенными, что обязательный программный материал усвоен ими хорошо. И лишь при необходимости усложнить работу можно ввести такие задачи. Поскольку в косвенных задачах логика арифметического действия противоречит действию по содержанию задачи, они дают большой простор для рассуждений, доказательств, приучают детей логически мыслить.
Исходя из этого, для детей высокого уровня интеллектуального развития можно предлагать проблемные (косвенные) задачи. Ознакомление детей седьмого года жизни с задачами такого типа возможно и имеет большое значение для их умственного развития. На этой основе в дальнейшем будут формироваться умения осуществлять анализ более сложных арифметических задач, объяснять ход решения, выбор арифметического действия. Косвенные задачи отличаются тем, что в них оба числа характеризуют один и тот же объект, а вопрос направлен на определение количества другого объекта. Трудности в решении таких задач определяются самой структурой и содержанием задачи. Как правило, в этих задачах есть слова, которые дезорганизуют ребенка при выборе арифметического действия. Несмотря на то, что в условии задачи есть слова больше, прилетели, старше и др., следует выполнять как бы обратное этому действие — вычитание. Для того чтобы ребенок правильно сориентировался, воспитатель учит его более тщательно анализировать задачу. Чтобы выбрать арифметическое действие, ребенок должен уметь рассуждать, логически мыслить. Пример косвенной задачи: «В корзине лежит пять грибочков, что на два грибочка больше, чем их лежит на столе. Сколько грибочков лежит на столе?» Часто дети, ориентируясь на несущественные признаки, а именно на отдельные слова (в данном случае слово больше), спешат выполнить действие сложения, допуская грубую математическую ошибку.
Воспитатель подчеркивает особенности таких задач, предлагая совместное рассуждение так: в условии задачи оба числа характеризуют один объект — количество грибов в корзине: в ней пять грибочков и в ней же на два больше, чем на столе. Необходимо узнать, сколько грибочков на столе. Если в корзине на два больше, то на столе лежит на два грибочка меньше. Чтобы узнать, сколько их на столе, следует от 5 вычесть 2 (5–2=?).
При составлении задач воспитатель должен помнить о том, что важно разнообразить формулировки в условии и вопросе задачи: насколько выше, тяжелее, дороже и т. д.
Приведем примеры косвенных задач:
В большую лодку сели 7 детей, в маленькую 3 ребёнка. Сколько детей разместилось в двух лодках?
а) 10 детей разместились в двух лодках: в большую лодку село 7 детей, а остальные в маленькую. Сколько детей село в маленькую лодку?
б) 10 детей разместилось в двух лодках: несколько детей село в большую лодку, а 3 ребёнка село в маленькую. Сколько детей село в большую лодку?
В одной коробке было 5 карандашей, а во второй 3 карандаша. Сколько карандашей было в двух коробках?
а) В двух коробках было 8карандашей: 3 в одной, а остальные во второй коробке. Сколько карандашей было во второй коробке?
б) В двух коробках было 8 карандашей. Во второй коробке было 5 карандашей. Сколько карандашей было в первой коробке?
в) В двух коробках было 8 карандашей. Сколько карандашей было в первой коробке? в одной коробке, если в другой лежало пять карандашей?
Школьники сделали 7 флажков. Один флажок был синий, а остальные зелёными. Сколько было зелёных флажков?
Мама и дочка собрали 10 стаканов малины. 5 стаканов мама помыла к ужину. Из остальных ягод она сварила варенье. Сколько стаканов малины пошло на варенье?
Колхозница купила 10 цыплят. Осенью 8 цыплят превратились в курочек, остальные стали петушками. Сколько было петушков?
В 2 солонках было 5 ложек соли. В одной из них было 3 ложки соли. Сколько ложек соли было в другой солонке? [2. с. 195]
Важно, чтобы задачи, которые мы даём ребёнку, были разнообразными, потому что если дошкольник, получат однотипные задачи, начинает решать их по аналогии, не вдумываясь в содержание и не анализируя задачу при решении. Дети очень скоро усваивает, что если что-то дали, кто-то приехал, прилетел и т. д. — надо прибавлять, а если наоборот — отнимать.
Не научившись объяснять, как получен ответ задачи, дошкольник привыкает механически ориентироваться только на слово, побуждающее к действию сложения или вычитания.
Однако очень скоро ребёнок сталкивается с такими задачами, где слово, обозначающее, что надо что-то складывать, не совпадает с тем арифметическим действием, которое надо произвести, чтобы решить задачу. Приведём пример такой задачи.
«На дереве сидели птички. После того, как пролетела ещё одна птичка, их стало шесть. Сколько птичек сидело на дереве»
Нередко такого рода задачи могут поставить дошкольников неподготовленных к решению задач, в тупик. Они дают ответ: «Семь птичек, ориентируясь на слово «прилетела» и прибавляя к шести птичкам ещё одну птичку».
По тому, как умеет ребёнок решать такого рода задачи, можно судить об уровне умственного развития ребёнка: умеет ли логически мыслить, рассуждать, доказывать правильность ответа. Именно при решении таких задач выявляется то, что мы называем нормальным усвоением знаний. Если дети, услышав знакомые слова «прилетели, прибежали, приехали», не давая себе труда вдуматься в смысл задачи, начинают складывать те числовые данные, которые имеются в задачи — значит, они не научены рассуждать при решении задачи, рассказывать, каким образом получился именно такой ответ.
Задачи, о которых идёт речь, нельзя решить без рассуждений. Именно важно предлагать детям подобные задачи уже в дошкольном возрасте.
Предлагая ребёнку задачу, аналогичную, следует его предупредить, что это особенная задача, не такая, как всегда, труднее. Например, «Собираясь идти в школу, девочка купила карандашей, но, выйдя из магазина, она увидела, что их мало. Пошла и купила ещё один карандаш, после чего карандашей стало пять. Сколько карандашей купила девочка в начале?» Задачу надо повторить несколько раз, чтобы ребёнок запомнил её. Потом предложить ему самому пересказать задание.
Теперь давай вместе рассуждать, — предлагает ребёнку взрослый. В задаче сказано, сколько карандашей купила девочка?
Нет, — отвечает ребёнок.
Правильно, это надо узнать, это нам не известно, когда девочка вернулась в магазин и купила ещё один карандаш, карандашей у неё стало больше или меньше?
Очевидно, ребёнок правильно ответит, что карандашей стало больше.
Совершенно верно, после покупки одного карандаша их стало больше: пять. Значит, до покупки этого карандаша их было меньше?
Меньше, — соглашается ребёнок.
На сколько меньше?
На один. Это нам известно из условия задачи.
Значит, чтобы узнать, сколько карандашей купила девочка в начале, то есть, сколько карандашей было у неё до покупки ещё одного, надо от пяти карандашей отнять один карандаш.
Теперь, предложив ребёнку самому узнать, сколько же карандашей купила девочка вначале, можно узнать, понял ли ребёнок задачу. Если он знает правильный ответ: «4 карандаша», можно ещё раз уточнить, как получен такой ответ. Ребёнок должен сказать, что он от 5 карандашей отнял 1 карандаш, получилось 4 карандаша [3].
Если ребёнок не может сразу усвоить логику рассуждений, можно прибегнуть к знакомому способу — предметной иллюстрации задачи и повторить приведённое выше рассуждение, держа в руке, пять карандашей. Ребёнок пересчитывает карандаши и убеждается, что их пять: «Сколько карандашей стало у девочки, когда она вернулась и купила ещё один карандаш.
Теперь давай посмотрим, сколько было карандашей до покупки вот этого карандаша» (При этом убираем один карандаш). Пересчитав карандаши, ребёнок убеждается, что карандашей было четыре.
Кроме того, путём соответствующего действия с предметами мы иллюстрируем задачу и помогаем представить ту жизненную ситуацию, которая описывается в ней. И хотя в задаче говорится, что девочка купила ещё один карандаш (со словом «купила» связывается действие сложение), ребёнок наглядно видит, что для получения правильного ответа необходимо произвести действие вычитание.
Обучая ребёнка решению обратных арифметических задач, взрослые рассуждают вместе с ребёнком, затем необходимо предложить ребёнку самому попробовать порассуждать. Можно и поиграть с ребёнком, предложив ему самому придумать трудную задачу, для того чтобы её решил взрослый. Ребёнок с удовольствием включается в такую игру, когда он выступает в роли учителя. При этом можно лишний раз убедиться, как ориентируется ребёнок при решении такого рода задачах, и поддержать интерес, необходимый при обучении вычислительной деятельности.
Решите задачи с условием в косвенной форме.
Девочки шили куклам платья. Когда они одели их на кукол, то увидели, что одного платья не хватило. Они сшили его. Теперь платьев стало пять. Сколько платьев они сшили в начале?
Девочка собирала грибы. В её корзине лежали только белые. Вдруг под ёлкой она увидела три подосиновика. Срезав их, девочка пересчитала все собранные грибы. Их стало 10. Сколько белых грибов было?
Кате 5 лет. Она моложе своего брата на 1 год. Сколько лет брату?
Юре 9 лет. Он старше своего товарища на 2 года. Сколько лет товарищу?
Красных тюльпанов 8, их на 1 больше чем жёлтых. Сколько жёлтых тюльпанов?
В парке 9 голубых скамеек. Их на 1 меньше, чем белых. Сколько белых скамеек в парке?
Белая курица снесла 2 яйца, это на одно яйцо меньше, чем снесла чёрная курица. Сколько яиц снесла чёрная курица?
Бригада строителей строила 9 этажный дом. Через месяц осталось построить три этажа. Сколько этажей построено?
На блюде лежали яблоки. 3 из них взяли и съели. Осталось на блюде 4 яблока. Сколько яблок было? [4. с. 196]
Подытоживая анализ проблемного поля, обучение детей старшего дошкольного возраста косвенным задачам, рекомендуем предлагать подобные задачи лучше всего в виде сюрприза: «Кто сообразит, как решать задачу, которую я вам сейчас задам?» Надо отметить, что эти задачи вызывают большой интерес у детей.
Итак, работа над задачами не только обогащает детей новыми знаниями, но и дает богатый материал для умственного развития.
Литература:
Щербакова Е. И. Методика обучения математике в детском саду: Учеб пособие для студ. дош. отд-ний и фак. сред. пед. учеб. заведений. — 2-е изд., стереотип. _ М.: Издательский центр «Академия», 2000. — 201 с. 2. Столяр А. А. Формирование элементарных математических представлений у дошкольников: Учеб. пособие для студентов пед. институтов. М.: Просвещение, 1988. — 195 с.
Белошистая В. А. Формирование и развитие математических способностей дошкольников: Вопросы теории и практики: Курс лекций для студ. дошк. Факультетов высш. учеб. заведений. — М.: Гуманит, изд. Центр ВЛАДОС, 2003. — 400 с.
Столяр А. А. Формирование элементарных математических представлений у дошкольников: Учеб. пособие для студентов пед. институтов. М.: Просвещение, 1988. — 196 с.