Применение современных компьютерных технологий при прогнозировании методом статистического анализа | Статья в сборнике международной научной конференции

Автор:

Рубрика: 9. Педагогика высшей профессиональной школы

Опубликовано в

III международная научная конференция «Инновационные педагогические технологии» (Казань, октябрь 2015)

Дата публикации: 16.09.2015

Статья просмотрена: 50 раз

Библиографическое описание:

Мирзоева Е. В. Применение современных компьютерных технологий при прогнозировании методом статистического анализа [Текст] // Инновационные педагогические технологии: материалы III Междунар. науч. конф. (г. Казань, октябрь 2015 г.). — Казань: Бук, 2015. — С. 164-167. — URL https://moluch.ru/conf/ped/archive/183/8747/ (дата обращения: 25.09.2018).

Прогнозирование, основанное на использовании методов статистического анализа ретроспективных данных, допустимо в том случае, когда между прошлым и будущим имеется определенная причинно-следственная связь.

Алгоритм построения прогноза методом статистического анализа состоит из следующих шагов:

— строится график зависимости спроса от времени, используя Мастер диаграмм Excel.

Порядок построения следующий:

1)       введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

2)       активизируйте Мастер диаграмм любым из следующих способов:

а)      в главном меню выберите Вставка/Диаграмма;

б)      на панели инструментов Стандартная щелкните по кнопке Мастер диаграмм;

3)       в окне Тип выберите График (рис.1) вид графика выберите в поле рядом со списком типов. Щелкните по кнопке Далее;

Тип диаграммы

Рис. 1. Диалоговое окно Мастера диаграмм: тип диаграммы

 

4)       заполните диапазон данных, как показано на рис. 2. Установите флажок размещения данных в столбцах (строках). Щелкните по кнопке Далее;

Источник данных (диаграмма)

Рис. 2. Диалоговое окно Мастера диаграмм: источник данных

 

5)       заполните параметры диаграммы на разных закладках (рис3.): название диаграммы и осей, значения осей, линии сетки, параметры легенды, таблица и подписи данных. Щелкните по кнопке Далее;

параметры диаграммы

Рис. 3. Диалоговое окно Мастера диаграмм: параметры диаграммы

 

6)  укажите место размещения диаграммы на отдельном или на имеющемся листе (рис.4). Щелкните по кнопке Далее. Готовая диаграмма выведется на указанное место;

размещение диаграммы

Рис. 4. Диалоговое окно Мастера диаграмм: размещение диаграммы

 

-        на основе визуального изучения графика делается предположение об аналитической форме кривой, которая наилучшим образом способна аппроксимировать ломаную на графике;

-        применяется метод наименьших квадратов для построения прогнозирующей кривой;

-        оценивается среднее значение погрешности полученных прогнозных оценок;

-        принимается решение об использовании или не использовании выбранной кривой для построения прогноза.

Наиболее часто употребимым методом построения прогнозирующей функции является метод наименьших квадратов.

Метод наименьших квадратов позволяет подобрать некоторую непрерывную аналитическую функцию для аппроксимации дискретного набора исходных данных. Выбор функции считается наилучшим, если сведено к минимуму стандартное отклонение по рассматриваемой временной выборке, которое определяется по формуле:

                                                                                  (1)

где: dt — фактический спрос, наблюдаемый в t-й период (отрезок) времени;

dt* — значение прогнозирующей функции для того же момента времени;

п — число периодов (наблюдений), т. е. длина временной выборки;

f — число степеней свободы.

Суммирование ведется по всей выборке, поэтому, как это принято в статистике, нижний и верхний индексы суммирования опущены.

Минимизация Sdt эквивалентна минимизации Σ(dt — dt*)2. Поэтому задача сводится к минимизации суммы квадратов разностей между фактическим значением спроса в момент t и тем значением, которое принимает прогнозирующая функция.

Наиболее часто для построения прогнозирующей функции используют линейную функцию у = а0 + a1t,

параболу у = а0 + a1t + a2t 2,

гиперболу у = а0 + a1 / t,

многочлены более высоких порядков.

Если предположить, что выбрана линейная форма прогнозирующей функции, то есть у = а0 + a1t, то для определения исходно неизвестных параметров а0 и а1 необходимо минимизировать . Для этого определяют первые частные производные Е по а0 и а1 и приравнивают их нулю, т. е. решают следующую систему уравнений:

                                            (2)

откуда и получают искомые значения параметров а0 и а1.

Аналогично получают параметры для гиперболы и параболы.

Поведение спроса часто носит циклический (периодический) характер. Тогда прогнозирующая функция может быть представлена в виде:

у == а + u cos(2π / N) t + v sin(2π / N) t,                                                                       (3)

где N — число периодов в одном цикле.

Суперпозиция линейной и циклической функций позволяет получить линейно-циклическую функцию:

у = а + bt + u cos(2π / N) t + v sin(2π / N) t,                                                                  (4)

Определение фигурирующих в формулах констант осуществляется методом наименьших квадратов.

Таким образом, необходимо помнить, что при выборе прогнозирующей функции предпочтение отдается той аналитической форме, которая обеспечивает минимальное из стандартных отклонений как погрешность оценки аппроксимации. Поэтому если нет уверенности, что тот или иной вид прогнозирующей функции заведомо предпочтительнее других, то следует испытать несколько различных форм прогнозирующей функции и выбрать наилучшую в соответствии с критерием минимизации стандартного отклонения.

 

Литература:

 

1.                  Мирзоева Е. В. Математические методы и модели в экономике: Учебник / Е. В. Мирзоева, С. Н. Грицюк, В. В. Лысенко — Ростов н/Д: Феникс, 2007- 348 с.

Основные термины (генерируются автоматически): прогнозирующая функция, диалоговое окно Мастера диаграмм, Мастер диаграмм, кнопка, параметр диаграммы, стандартное отклонение, статистический анализ, число периодов.

Похожие статьи

Сводные таблицы в MS Excel 2013 | Статья в сборнике...

Мастер сводных таблиц и диаграмм. Работа этого мастера состоит из трёх шагов.

Не смежные диапазоны в диалоговом окне будут отображаться через точку с запятой. Рис. 2. Создание сводной таблицы, шаг 2.

Учебный элемент по теме: «Построение диаграмм различных...»

Рис. 1. Окно запуска программы «Microsoft Excel». – В левом нижнем углу вы видите кнопки с листами (рис.2).

Построение диаграммы типа «график» с легендой. – Перейдите на «Лист 2» -> Переименуйте его в «График функции».

Статистический анализ партии обработанных изделий в MS Excel

Рис.4. Диалоговое окно Анализ данных. Рис. 5. Результаты анализа. Заполним расчетную таблицу, применяя статистические функции MS Excel — СРЗНАЧ, ЧАСТОТА, ВЕРОЯНОСТЬ, СТАНДОТКЛОН и НОРМРАСП (рис. 6). В результате получили значения математического...

Разработка программных модулей обработки многомерных данных...

Рис. 4. Вызов диалогового окна EXCEL «Пользовательский автофильтр».

С её помощью можно построить графики, гистограммы, спектры мощности, диаграммы ошибок и разброса...

Рассмотрим реализацию статистического анализа в MS Excel, для этого загрузим надстройку...

Построение диаграммы типа «график» с легендой.

Максимальный разрыв — более сложный параметр. Это число, измеряемое в процентах от интервала.

– Нажимаем в пустом окне правой кнопкой мыши, и выбираем добавить график

Учебный элемент по теме: «Построение диаграмм различных...»

Вычисление статистических показателей с использованием...

Количество доступных статистических функций последних, сегодня почти не уступает специальным программам [1].

Кроме этого есть Simulink — графическая среда имитационного моделирования, позволяющая при помощи блок-диаграмм в виде направленных графов...

Сравнительный анализ алгоритмов формирования диаграмм...

График величины подавления диаграммы направленности с угла прихода полезного сигнала: Рис.2.

Лучше всех себя показал алгоритм минимума средней квадратичной ошибки, так как отклонение главного лепестка началось лишь при секторе направления помех 42°, а полная...

Анализ и предварительная обработка данных для решения задач...

С её помощью можно построить графики, гистограммы, спектры мощности, диаграммы ошибок и разброса, используя всего несколько строк кода. Для анализа и предварительной обработки данных помимо стандартных функций языка python использовалась библиотека statsmodels...

Применение методов скользящей средней, экспоненциального...

где: n — число наблюдений, входящих в интервал сглаживания.

Относительно просто решение этой задачи в среде MS Excel достигается с использованием средства Мастер диаграмм.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Сводные таблицы в MS Excel 2013 | Статья в сборнике...

Мастер сводных таблиц и диаграмм. Работа этого мастера состоит из трёх шагов.

Не смежные диапазоны в диалоговом окне будут отображаться через точку с запятой. Рис. 2. Создание сводной таблицы, шаг 2.

Учебный элемент по теме: «Построение диаграмм различных...»

Рис. 1. Окно запуска программы «Microsoft Excel». – В левом нижнем углу вы видите кнопки с листами (рис.2).

Построение диаграммы типа «график» с легендой. – Перейдите на «Лист 2» -> Переименуйте его в «График функции».

Статистический анализ партии обработанных изделий в MS Excel

Рис.4. Диалоговое окно Анализ данных. Рис. 5. Результаты анализа. Заполним расчетную таблицу, применяя статистические функции MS Excel — СРЗНАЧ, ЧАСТОТА, ВЕРОЯНОСТЬ, СТАНДОТКЛОН и НОРМРАСП (рис. 6). В результате получили значения математического...

Разработка программных модулей обработки многомерных данных...

Рис. 4. Вызов диалогового окна EXCEL «Пользовательский автофильтр».

С её помощью можно построить графики, гистограммы, спектры мощности, диаграммы ошибок и разброса...

Рассмотрим реализацию статистического анализа в MS Excel, для этого загрузим надстройку...

Построение диаграммы типа «график» с легендой.

Максимальный разрыв — более сложный параметр. Это число, измеряемое в процентах от интервала.

– Нажимаем в пустом окне правой кнопкой мыши, и выбираем добавить график

Учебный элемент по теме: «Построение диаграмм различных...»

Вычисление статистических показателей с использованием...

Количество доступных статистических функций последних, сегодня почти не уступает специальным программам [1].

Кроме этого есть Simulink — графическая среда имитационного моделирования, позволяющая при помощи блок-диаграмм в виде направленных графов...

Сравнительный анализ алгоритмов формирования диаграмм...

График величины подавления диаграммы направленности с угла прихода полезного сигнала: Рис.2.

Лучше всех себя показал алгоритм минимума средней квадратичной ошибки, так как отклонение главного лепестка началось лишь при секторе направления помех 42°, а полная...

Анализ и предварительная обработка данных для решения задач...

С её помощью можно построить графики, гистограммы, спектры мощности, диаграммы ошибок и разброса, используя всего несколько строк кода. Для анализа и предварительной обработки данных помимо стандартных функций языка python использовалась библиотека statsmodels...

Применение методов скользящей средней, экспоненциального...

где: n — число наблюдений, входящих в интервал сглаживания.

Относительно просто решение этой задачи в среде MS Excel достигается с использованием средства Мастер диаграмм.

Задать вопрос