Сельский дом с гелиотеплицами и водонагревательной установкой коммунально-бытового назначения | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Библиографическое описание:

Сельский дом с гелиотеплицами и водонагревательной установкой коммунально-бытового назначения / А. А. Вардияшвили, Т. А. Файзиев, Исмоил Муродов [и др.]. — Текст : непосредственный // Молодой ученый. — 2015. — № 7 (87). — С. 97-100. — URL: https://moluch.ru/archive/87/17009/ (дата обращения: 19.04.2024).

Научно-технический прогресс, характеризующийся резким ростом потребления энергии, привлек острое внимание к проблеме использования возобновляемых источников энергии, и в первую очередь солнечной. Важность этой проблемы неоднократно подчеркивалась на международных и всесоюзных конференциях совещаниях по использованию солнечной радиации. Это объясняется, с одной стороны, намечающимся практическим истощением мировых запасов ископаемого топлива и возникновением энергетического кризиса, с другой катастрофическим загрязнением окружающей среды вредными продуктами сгорания.

Растущие с каждым годом потребности мировой экономики в энергии. Кроме того, озабоченность международного сообщества вызывается, наряду с возрастающими трудностями в освоении новых источников традиционного углеводородного сырья-нефти и газа, также быстрым истощением их запасов.

Но самый важный фактор, с которым мы не имеем права не считаться, -достигшие колоссальных размеров использование и сжигание ископаемого топлива наносят ощутимый вред окружающей среде, отражаются на здоровье и качестве жизни населения и ставят под угрозу устойчивость будущего развития на глобальном уровне.

Выход из складывающейся ситуации, прежде всего, видится в дальнейшем обеспечении роста инвестиций в проекты по развитию солнечной энергетики как наиболее эффективного и перспективного источника возобновляемых видов энергии.

Таким образом, солнечная энергетика может и должна стать одним из локомотивов выхода из кризиса. (И. А. Каримов. 6-го заседание азиатского форума солнечной энергии. Ташкент. 2013год 22 ноября). [1].

Говоря о потенциале и перспективах развития солнечной энергетики в Узбекистане, хотел бы подчеркнуть следующее.

В первую очередь, по географическому положению и климатическим условиям Узбекистан располагает для этого исключительно благоприятными возможностями.

По количеству солнечных дней в году, а это более 320 дней, наша страна превосходит многие регионы мира

В связи с этим, за последние годы во многих странах мира, в том числе у нас в Узбекистане ведутся интенсивные исследовательские работы по практическому применению гелиотехнических установок. Одной из проблем использование солнечной энергии заключается в том, что наибольшее количество поступает летом, а наибольшее количество потребления энергии происходит зимой.

Плотность солнечного излучения на внешней границе атмосферы составляет 1,39 кВт/м2. На поверхность круга диаметром, равным диаметру земного шара, приходится мощностью 178 тыс. ТВт, что в 20 раз превышает суммарную мощность энергетических установок мира (8–9 ТВт). Однако до земной поверхности доходит только часть этой мощности вследствие поглощения и отражения ее атмосферой. В наиболее благоприятных районах пиковая удельная мощность солнечного излучения на поверхность Земли равна 1 кВт/м2, в то время как средняя удельная мощность составляет 0,25 кВт/м2.

Использование солнечной энергии для целей горячего водоснабжения является одной из технически осуществляемых и экономически рентабельных отраслей практической гелиотехники. На основе многолетних испытаний в натуральных условиях с целью определения технических и эксплуатационных характеристик установлены: годичное теплопроизводительность установки, зависимость теплопроизводительности и эффективности от времени года, надежность установки в зависимости от механических повреждений, и метеорологических факторов, а также установлен оптимальный объем теплового аккумулятора.

Обычно высота аккумулятора-резервуара изготавливают из расчета ; -диаметр, - высота. Толщина теплоизоляции аккумулятора  см.

Одним из основных, наиболее существенных элементов солнечной водонагревательной установки является поглотитель солнечного излучения- зачерненный тепло приемник-котел. В качестве материала котлов рассматривались: полиэтилен низкого давления, стальные профилированные листы, алюминиевые сплавы АД-1 (листовой прокат). Водонагреватель в летний период солнечной радиации 700–800 Вт/м2 и наружной температуры атмосферы 30–32°С, позволяет получить с каждого квадратного метра поверхности 1200–1400 кДж тепла с температурой горячей воды 50 -55ºС, в условия г. Карши.

Результаты испытания показывают, что с каждого квадратного метра можно получить горячей воды 90–95 л/м2 в день с температурой 50–60ºС. Непрерывные эксплуатационные испытания солнечной водонагревательной установки площадью 6 м2 показали, что производительность установки составляет 450–500 л горячей воды в день, при температуре 50–60ºС.

На основе результатов непрерывных круглогодичных испытаний в натуральных условиях была установлена зависимость производительности от времени года, а также определена надежность работы установки составляет 2260–2300 кДж/м2, в том числе 1720–1760 кДж/м2 в летние и переходные времена года и 500–508 кДж/м2 в зимние времена.

С учетом графика неравномерности выработки и потребления горячей воды в жилых домах установлен оптимальный объем теплового аккумулятора (летом 70 л/чел, зимой 100 л/чел); при этом удельная рабочая площадь солнечной водонагревательной установки для летнего периода — 2 м2/чел.

Результаты расчета показывают, что возможная экономия топлива составляет 0,17 -0,2 т.у.т.с. 1 м2 установки в год.

Тепловая мощность коллектора солнечной энергии (КСЭ) определяется по формуле:

Qk=F [Ik —  ()]=G Cp() (1)

Удельная теплопроизводительность КСЭ, вычисляем по соотношению:

  (2)

где   а=10,7 10; в=29,3 10

; G=кг/с;  

В условиях г.Карши интенсивность падающей солнечной радиации для летнего периода (май-август) составляет ; среднесуточная температура tср=24–30,5 оС. При нагреве воды на t=40 oC, часовая производительность G = 8–9 л/ м2 ч, гелиоводонагревателя определяем по формуле:

 (3)

эффективность гелиоколлектора в зависимости от метеорологических условий определяется соотношением:

где; S-площадь коллектора, м2; Qg- полезное использование тепла (энергии), кДж. Годовая теплопроизводительность КСЭ в условиях города Карши составляет:

;

т. е. экономия органического топлива с 1 кв.метра полезной площади гелионагревателя будет, соответственно 0,150,18 т.у.т./год. Средний расход топлива (Дж) на горячее водоснабжение здания за расчетный период (год) определяется по формуле:

 А Ср  (4)

где, А=G=норма расхода (60 л/ч день); n-число дней в расчетный период, m- число жителей. Определим тепловую производительность солнечной установки за январь месяц. Значение

Iг = 253,6 МДж/(м2 мес); В=1,7.

На основании расчетных формул в соответствии с площадью гелиоколлектора S1=2,7 м2, S2=4,5 м2 месячная теплопроизводительность солнечной установки на январь месяц Qг1=1676 МДж/мес; Qг2=2793 МДж/мес. Определяем степень замещения тепловой нагрузки горячего водоснабжения солнечной энергией. Используя вышеприведенный метод, определяем теплопроизводительность солнечной установки и степень замещения f для других месяцев. Для солнечно — коллекторной установки за июль месяц можно принять наиболее оптимальное значение степени замещения f=1.

При Gc1=60 л/(чел сут): площадь коллектора Fc1=5м2;

Годовая степень замещения fc1=75,7 %

При Gc2=!00 л/(чел сут): площадь коллектора Fc1= 9 м2;

Годовая степень замещения fс2=81,4 %

Объем аккумулятора горячей воды определяем по условию

Vа=Vа Fс=0,05 Fс;

При Gс1= 60 л/(чел сут), m=5: Vа=0,25 м3 = 250 л;

Gc2 = 100 л/(чел сут), m=5: Vа=0,45 м3 =450 л.      (5)

Годовая нагрузка на горячее водоснабжение:

Qг1=19,133 106 кДж/год; Qг2=31, 888 106 кДж/год.

Годовой расход природного газа

Qт1=898 м3/год

Qт1=1485 м3/год

условного топлива

Qу1=1185 кг у. т./год

Qу1=1185 кг у. т./год.

В большинстве существующих установок средний годовой эксплуатационный КПД коллектора оказывается на уровне 40–50 %. Это означает, что для широт около 35–400, с 1м2 коллектора можно получить в год 3–5 ГДж тепла с температурой 60–700С. Экономия органического топлива с 1 кв. метра полезней площади гелиоводонагревателя в условиях г.Карши, составляет соответственно 0,18–0,2 т.у.т/год; 0,16–0,18 т.у.т./год, 0,15–0,16 т.у.т/год [4].

В солнечных теплицах в режиме работы с использованием теплоты дымовых газов от котельной экономия энергия затрат составляет 45–55 %, т. е. 25–30 кг. у.т/м2 инвентарной площади теплицы.

При сушке сельхозпродуктов в солнечных сушильных установках с 1 кг. метра экономия топлива составляет 10–13 м3/день природного газа.

Приведенного достаточно, чтобы понять: резервы энергетики по части низкопотенциального солнечного тепла еще огромны. Как их назвать — первичными или вторичными — это неважно. Важно другое: на сегодняшний день это потерянные ресурсы для нашей экономики.

Таким образом, если мы хотим работать в режиме энергосбережения, экономии и улучшения структуры потребляемых топливно-энергетических ресурсов, переходить на более экологически чистые, нетрадиционные и возобновляемые источники энергии, то без систем аккумулирования теплоты и других прогрессивных способов складирования энергии эти задачи, очевидно, нерешаемы.

 

Литература:

 

1.         И. А. Каримов. «Тенденции и перспективы технологий солнечной энергетики». Материалы 6-го заседание азиатского форума солнечной энергии.г.Ташкент.2013год 20–23 ноября.

2.         Захидов Р. А. Энергетика стран мира и Узбекистана в ХХI -веке //Узбекский журнал «Проблемы информатики и энергетики» Ташкент. изд. «Фан» — 2002 у. стр. 27–42.

3.         Берковский Б. Солнечный путь к экономическому развитию и охране окружающей среды. //Теплоэнергетика. М., 1996 г. № 5.

4.         Жамалов Аж. Основы расчета и использования плоских солнечных коллекторов в АПК Республики Казахстан. Автореф. дисс. доктора техн. наук. г.Алматы — 1999 г. — 48 с.

Основные термины (генерируются автоматически): горячая вода, солнечная энергия, горячее водоснабжение, летний период, солнечная водонагревательная установка, солнечная установка, солнечная энергетика, солнечное излучение, Узбекистан, органическое топливо.


Похожие статьи

Использование низкопотенциальной солнечной энергии...

солнечная энергия, горячая вода, природный газ, горячее водоснабжение, площадь коллектора, отрасль экономики, солнечная установка, солнечная водонагревательная установка, расчетный период, летний период.

Сельский солнечный дом с гелиотеплицами, солнечными...

Водонагреватель в летний период при солнечной радиации 700–800 Вт/м2 и наружной температуре атмосферы 30–32 0С, позволяет получить с каждого квадратного метра поверхности 1200–1400 кДж тепла с температурой горячей воды 50–550С, в условия г. Карши...

Солнечная энергия и ее использование | Статья в журнале...

2. Солнечная установка тарельчатого типа. 3. Солнечные электростанции башенного типа с центральным приемником [5].

Основные термины (генерируются автоматически): коллектор, солнечная энергия, горячая вода, солнечная радиация, система, солнечный свет...

Способы получения электрики и тепла из солнечного излучения

солнечная энергия, солнечное излучение, коллектор, фотоэлемент, элемент, окружающая среда, солнечная энергетика, горячее водоснабжение, солнечная тепловая энергия, солнечная электростанция.

Повышение энергоэффективности систем теплоснабжения...

В статье представлена система теплоснабжения с использованием солнечной энергии. На основе теоретических исследований рассмотрены преимущества систем горячего водоснабжения и теплоснабжения в Республике Узбекистан.

Перспективы использования солнечной энергии в ГВС на...

Солнечный водонагревательный коллектор предназначен для нагрева воды с помощью солнечной энергии. В коллекторе происходит улавливание, поглощение и преобразование в низкопотенциальное тепло (до 100оС) энергии солнечного излучения...

Экологические последствия развития солнечной энергетики

Ключевые слова: солнечная энергия, энергетика, экология, экологические проблемы, климат, окружающая среда. Солнечная энергетика — это направление альтернативной энергетики...

Перспективы использования солнечной энергии для отопления...

солнечная энергия, отопление дома, коллектор, солнечная батарея, кВт, дом, Россия, Европа, солнечная радиация, горячая вода.

Эффективность съёма энергии солнца в системе солнечный...

Это то, что солнечная энергетика не загрязняет окружающую среду и является легкодоступной энергией. На рисунке 1 изображена продолжительность солнечного сияния на территории России.

Похожие статьи

Использование низкопотенциальной солнечной энергии...

солнечная энергия, горячая вода, природный газ, горячее водоснабжение, площадь коллектора, отрасль экономики, солнечная установка, солнечная водонагревательная установка, расчетный период, летний период.

Сельский солнечный дом с гелиотеплицами, солнечными...

Водонагреватель в летний период при солнечной радиации 700–800 Вт/м2 и наружной температуре атмосферы 30–32 0С, позволяет получить с каждого квадратного метра поверхности 1200–1400 кДж тепла с температурой горячей воды 50–550С, в условия г. Карши...

Солнечная энергия и ее использование | Статья в журнале...

2. Солнечная установка тарельчатого типа. 3. Солнечные электростанции башенного типа с центральным приемником [5].

Основные термины (генерируются автоматически): коллектор, солнечная энергия, горячая вода, солнечная радиация, система, солнечный свет...

Способы получения электрики и тепла из солнечного излучения

солнечная энергия, солнечное излучение, коллектор, фотоэлемент, элемент, окружающая среда, солнечная энергетика, горячее водоснабжение, солнечная тепловая энергия, солнечная электростанция.

Повышение энергоэффективности систем теплоснабжения...

В статье представлена система теплоснабжения с использованием солнечной энергии. На основе теоретических исследований рассмотрены преимущества систем горячего водоснабжения и теплоснабжения в Республике Узбекистан.

Перспективы использования солнечной энергии в ГВС на...

Солнечный водонагревательный коллектор предназначен для нагрева воды с помощью солнечной энергии. В коллекторе происходит улавливание, поглощение и преобразование в низкопотенциальное тепло (до 100оС) энергии солнечного излучения...

Экологические последствия развития солнечной энергетики

Ключевые слова: солнечная энергия, энергетика, экология, экологические проблемы, климат, окружающая среда. Солнечная энергетика — это направление альтернативной энергетики...

Перспективы использования солнечной энергии для отопления...

солнечная энергия, отопление дома, коллектор, солнечная батарея, кВт, дом, Россия, Европа, солнечная радиация, горячая вода.

Эффективность съёма энергии солнца в системе солнечный...

Это то, что солнечная энергетика не загрязняет окружающую среду и является легкодоступной энергией. На рисунке 1 изображена продолжительность солнечного сияния на территории России.

Задать вопрос