О методах и подходах геометрического моделирования плоских кривых | Статья в журнале «Молодой ученый»

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №2 (82) январь-2 2015 г.

Дата публикации: 21.01.2015

Статья просмотрена: 69 раз

Библиографическое описание:

Хаитов Б. У., Кучкарова О. О методах и подходах геометрического моделирования плоских кривых // Молодой ученый. — 2015. — №2. — С. 218-221. — URL https://moluch.ru/archive/82/14892/ (дата обращения: 17.07.2018).

В статье приведено описание и некоторые подходы к построению геометрического аппарата моделирования плоских кривых.

Ключевые слова: геометрическое моделирование, геометрический аппарат, плоские кривые.

 

С математической точки зрения мы привыкли рассуждать множество явлений природы аналитически. Стараемся устанавливать зависимость того или иного происходящего явления для того чтобы понять непонятное и тем самым успокоить разум. Множество подобных явлений классифицируются, группируются, систематизируются для того чтобы облегчить задачу последователей. Но природу всякого явления с геометрической стороны можно классифицировать одним названием — обстоятельство.

Мы не привыкли рассуждать множество явлений природы геометрическими образами, хотя некоторые математические описания имеют толкование геометрических образов: линейное уравнение, линейное пространство, квадратное или кубическое уравнение и т. п.

Весьма интересно толкование прямой и кривых линий второго порядка с аналитической стороны. В декартовой системе координат нельзя их объединить в один класс. Прямая есть линия первого порядка, а кривые алгебраические второго, третьего … n-го порядка. Кроме того они еще и делятся на трансцендентные. По всей видимости в декартовой системе сложно понять геометрию (природу) образования кривых, усложняется тем самым понятие естественности. В разных литературах по разному описываются природа образования кривых. Линию можно рассматривать как пересечение двух поверхностей [1], как траекторию движущейся точки на плоскости или пространстве [2]. В частности более разнообразно описываются линии в трудах Савелова А. А. [3] (имеются семь описаний).

Рассмотрим обстоятельство образования плоских кривых на примерах геометрических построений. Попробуем построить аппарат геометрического моделирования для плоских кривых в отличие от декартовой системы построений. Для этого нам потребуется плоскость H — где будут отображаться плоские кривые и какие-либо условия исходя из поставленной задачи. Если линия есть след движущейся точки в пространстве, в нашем примере на плоскости то на этой плоскости требуются дополнительно еще и два рычага управления, чтобы можно было управлять кривизной линии (поворачивать в права, в влево или вверх, вниз). Следовательно, на плоскости H закрепляем две точки F1 и F2 (рис. 1), тем самым образуем геометрический аппарат моделирования для плоских кривых.

Рис. 1

 

Данный аппарат позволяет сформировать на нем кривые линии в частности и прямую.

Определим положение любой точки M принадлежащей кривой через опорные точки F1 и F2. Очевидно, самое простое отношение F1M=F2M или F1M–F2M=0 определит прямую (рис. 2-а).

Отношение F1M+F2M=a (const.) всегда определяет эллипс (рис. 2-б), также как отношение в) F1M–F2M=a (const.) (рис. 2-в).

Отношение F1M/F2M=a (const.) или F1M*F2M=a (const.) определяет окружность (рис. 2-г).

Кривая параболы на предлагаемом аппарате моделирования требует некоторого иного подхода. Для начала строится прямая b как показано на рис. 2-а или выбирается другой аппарат моделирования который состоит из плоскости H, точки F и прямой b не проходящей через данную точку. Тогда, отношение bM–F2M=0 будет удовлетворять кривой параболе (рис. 3).

а) F1M–F2M=0           Прямая

б) F1M+F2M=a (const.)         Эллипс

 

в) F1M–F2M=a (const.)         Гипербола

г) F1M/F2M=a (const.) или F1M*F2M=a (const.)            Окружность

Рис. 2

 

Рис. 3. Геометрическая модель параболы (bM–FM=0).

 

Следовательно, прямая и кривая параболы родственные линии в различных аппаратах геометрического моделирования (сравните: F1M–F2M=0 и bM–FM=0).

Какие кривые будут построены если будем сохранят отношения первого аппарата для второго. Важным элементом построений является параметр a по отношению к расстоянии от прямой b до точки F (рис. 4).

bM+FM=a (const.)    Эллипс

bM–FM=a (const.) Гипербола

Рис. 4

 

В заключении можно сказать что методы геометрического моделирования по отношению к аналитическим преимущественно разнообразны и многовариантны для моделирования различных объектов и процессов. Кроме того они более доступны для широкого круга пользователей имеющие навыки элементарной математики, геометрии, алгебры.

 

Литература:

 

1.      Выгодский М. Я. Справочник по высшей математике. — М.: Наука, 1977. — С.200.

2.      Гордон В. О., Семенцов-Огиевский М. А. Курс начертательной геометрии. — М.: Наука, 1988. — С.125.

3.      Савелов А. А. Плоские кривые — систематика, свойства, применения. — М.: 1960. — 293с.

Основные термины (генерируются автоматически): геометрическое моделирование, кривая парабола, кривой, прямая, геометрический аппарат моделирования, линия, множество явлений природы, отношение, плоскость.


Ключевые слова

геометрическое моделирование, геометрический аппарат, плоские кривые.

Похожие статьи

Логические продолжения некоторого типа задач на построение...

Если взять четыре точки на плоскости, то тогда про какие кривые можно говорить.

Покорная, И. Ю. Сплайны как основа моделирования / И. Ю. Покорная, И. В

Основные термины (генерируются автоматически): уравнение окружности, ABC, кривой, уравнение параболы...

Об одном геометрическом методе определения линии общего...

В статье приведено определение линии общего уклона плоских кривых востребованных в практике инженерного проектирования для определения плоскости рельефа. Ключевые слова: геометрическое моделирование, наклонная кривой, плоскость рельефа.

Исследование свойств поверхностей вращения с использованием...

Пусть кривая L лежит в плоскости OYZ.

Моделирование поверхностей второго порядка вСАПР «Компас».

Выбираем рабочую плоскость, чертим ось вращения и образующую конуса (прямую, пересекающую ось).

Новые обобщения определения параболы | Статья в журнале...

Параболагеометрическое место точек, равноудалённых от данной прямой

Директриса — прямая , лежащая в плоскости конического сечения и обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса кривой к расстоянию от той же точки...

Методы математического описания контуров лекал швейных...

Математическим аппаратом для решения задач геометрического проектирования является вычислительная геометрия.

Каждый узел (участок кривой) выражаем через функцию.

Отметим, что за нормаль можно принять линию, перпендикулярную прямой, которая...

Определение параметров формы и положения кривых 2-го порядка

При этом особенно уделяются внимание методам исследования кривых линии и поверхностей, которые часто встречаются на

Совокупность парабол на плоскости четырех параметрическое множество, мощность которого равна ∞4 (один — параметр формы.

Графо-аналитический метод определения линии общего уклона...

Становятся востребованными разработка теоретических основ геометрического моделирования рельефа для задач инженерной подготовки территорий.

Рис. 1. Линии общего уклона кривой с четным количеством данных. Среднее значение высот равно

Наглядность как метод формирования понятий, явлений...

При показе физико-географических явлений часто применяются обобщающие графики в виде гипсографических кривых.

Диаграммы — это графическое изображение функциональной зависимости соответствующего явления в виде геометрических фигур.

Логические продолжения некоторого типа задач на построение...

Если взять четыре точки на плоскости, то тогда про какие кривые можно говорить.

Покорная, И. Ю. Сплайны как основа моделирования / И. Ю. Покорная, И. В

Основные термины (генерируются автоматически): уравнение окружности, ABC, кривой, уравнение параболы...

Об одном геометрическом методе определения линии общего...

В статье приведено определение линии общего уклона плоских кривых востребованных в практике инженерного проектирования для определения плоскости рельефа. Ключевые слова: геометрическое моделирование, наклонная кривой, плоскость рельефа.

Исследование свойств поверхностей вращения с использованием...

Пусть кривая L лежит в плоскости OYZ.

Моделирование поверхностей второго порядка вСАПР «Компас».

Выбираем рабочую плоскость, чертим ось вращения и образующую конуса (прямую, пересекающую ось).

Новые обобщения определения параболы | Статья в журнале...

Параболагеометрическое место точек, равноудалённых от данной прямой

Директриса — прямая , лежащая в плоскости конического сечения и обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса кривой к расстоянию от той же точки...

Методы математического описания контуров лекал швейных...

Математическим аппаратом для решения задач геометрического проектирования является вычислительная геометрия.

Каждый узел (участок кривой) выражаем через функцию.

Отметим, что за нормаль можно принять линию, перпендикулярную прямой, которая...

Определение параметров формы и положения кривых 2-го порядка

При этом особенно уделяются внимание методам исследования кривых линии и поверхностей, которые часто встречаются на

Совокупность парабол на плоскости четырех параметрическое множество, мощность которого равна ∞4 (один — параметр формы.

Графо-аналитический метод определения линии общего уклона...

Становятся востребованными разработка теоретических основ геометрического моделирования рельефа для задач инженерной подготовки территорий.

Рис. 1. Линии общего уклона кривой с четным количеством данных. Среднее значение высот равно

Наглядность как метод формирования понятий, явлений...

При показе физико-географических явлений часто применяются обобщающие графики в виде гипсографических кривых.

Диаграммы — это графическое изображение функциональной зависимости соответствующего явления в виде геометрических фигур.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Логические продолжения некоторого типа задач на построение...

Если взять четыре точки на плоскости, то тогда про какие кривые можно говорить.

Покорная, И. Ю. Сплайны как основа моделирования / И. Ю. Покорная, И. В

Основные термины (генерируются автоматически): уравнение окружности, ABC, кривой, уравнение параболы...

Об одном геометрическом методе определения линии общего...

В статье приведено определение линии общего уклона плоских кривых востребованных в практике инженерного проектирования для определения плоскости рельефа. Ключевые слова: геометрическое моделирование, наклонная кривой, плоскость рельефа.

Исследование свойств поверхностей вращения с использованием...

Пусть кривая L лежит в плоскости OYZ.

Моделирование поверхностей второго порядка вСАПР «Компас».

Выбираем рабочую плоскость, чертим ось вращения и образующую конуса (прямую, пересекающую ось).

Новые обобщения определения параболы | Статья в журнале...

Параболагеометрическое место точек, равноудалённых от данной прямой

Директриса — прямая , лежащая в плоскости конического сечения и обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса кривой к расстоянию от той же точки...

Методы математического описания контуров лекал швейных...

Математическим аппаратом для решения задач геометрического проектирования является вычислительная геометрия.

Каждый узел (участок кривой) выражаем через функцию.

Отметим, что за нормаль можно принять линию, перпендикулярную прямой, которая...

Определение параметров формы и положения кривых 2-го порядка

При этом особенно уделяются внимание методам исследования кривых линии и поверхностей, которые часто встречаются на

Совокупность парабол на плоскости четырех параметрическое множество, мощность которого равна ∞4 (один — параметр формы.

Графо-аналитический метод определения линии общего уклона...

Становятся востребованными разработка теоретических основ геометрического моделирования рельефа для задач инженерной подготовки территорий.

Рис. 1. Линии общего уклона кривой с четным количеством данных. Среднее значение высот равно

Наглядность как метод формирования понятий, явлений...

При показе физико-географических явлений часто применяются обобщающие графики в виде гипсографических кривых.

Диаграммы — это графическое изображение функциональной зависимости соответствующего явления в виде геометрических фигур.

Логические продолжения некоторого типа задач на построение...

Если взять четыре точки на плоскости, то тогда про какие кривые можно говорить.

Покорная, И. Ю. Сплайны как основа моделирования / И. Ю. Покорная, И. В

Основные термины (генерируются автоматически): уравнение окружности, ABC, кривой, уравнение параболы...

Об одном геометрическом методе определения линии общего...

В статье приведено определение линии общего уклона плоских кривых востребованных в практике инженерного проектирования для определения плоскости рельефа. Ключевые слова: геометрическое моделирование, наклонная кривой, плоскость рельефа.

Исследование свойств поверхностей вращения с использованием...

Пусть кривая L лежит в плоскости OYZ.

Моделирование поверхностей второго порядка вСАПР «Компас».

Выбираем рабочую плоскость, чертим ось вращения и образующую конуса (прямую, пересекающую ось).

Новые обобщения определения параболы | Статья в журнале...

Параболагеометрическое место точек, равноудалённых от данной прямой

Директриса — прямая , лежащая в плоскости конического сечения и обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса кривой к расстоянию от той же точки...

Методы математического описания контуров лекал швейных...

Математическим аппаратом для решения задач геометрического проектирования является вычислительная геометрия.

Каждый узел (участок кривой) выражаем через функцию.

Отметим, что за нормаль можно принять линию, перпендикулярную прямой, которая...

Определение параметров формы и положения кривых 2-го порядка

При этом особенно уделяются внимание методам исследования кривых линии и поверхностей, которые часто встречаются на

Совокупность парабол на плоскости четырех параметрическое множество, мощность которого равна ∞4 (один — параметр формы.

Графо-аналитический метод определения линии общего уклона...

Становятся востребованными разработка теоретических основ геометрического моделирования рельефа для задач инженерной подготовки территорий.

Рис. 1. Линии общего уклона кривой с четным количеством данных. Среднее значение высот равно

Наглядность как метод формирования понятий, явлений...

При показе физико-географических явлений часто применяются обобщающие графики в виде гипсографических кривых.

Диаграммы — это графическое изображение функциональной зависимости соответствующего явления в виде геометрических фигур.

Задать вопрос