Библиографическое описание:

Захарова В. С., Амангусова Л. А. Квантово-химическое исследование форм тяжелых металлов, извлекаемых из водных растворов методом ионной флотации // Молодой ученый. — 2014. — №15. — С. 80-82.

Перспективным методом извлечения тяжелых металлов из техногенных вод промышленных предприятий является ионная флотация. При разработке теоретических основ и практической реализации данного метода важным представляется применение квантово-химического подхода к выбору реагентов-собирателей для селективного флотационного выделения тяжелых металлов, для моделирования процесса взаимодействия между извлекаемой формой металла и собирателем, образующихся систем «извлекаемая форма металла-реагент-собиратель», изучение форм тяжелых металлов, извлекаемых во время флотационного процесса.

В работах [8, 13, 14] по извлечению катионов металлов из техногенных и сточных вод указывается на то, что эффективными формами их выделения являются либо ионная, либо гидроксидная. При этом авторы не учитывают, что в минерализованных растворах катионы металлов гидратированы и находятся в виде аквакатионов и/или гидроксоаквакатионов, заведомо упрощая теорию процесса извлечения ценных компонентов в соответствии с решаемыми задачами.

В данной работе проведено квантово-химическое исследование эффективных, извлекаемых из техногенных вод в процессе ионной флотации реагентом-собирателем, форм таких металлов, как медь, цинк, железо, марганец на основании расчёта квантово-химических параметров их реакционной способности. Комплекс этих параметров для различных систем, образующихся в процессе ионной флотации, подробно рассмотрен в работах [7, 9–12, 15]. К ним относят абсолютную жесткость ƞ, абсолютную мягкость S, химический потенциалχ, глобальную электрофильность IЕ и локальную электрофильность IЕ+.

Для вычисления абсолютной жесткости и мягкости, химического потенциала реагентов использовали формулы R. Pearswon и R. Parr [3–5]:

где ЕНОМО и ELUМО — значения энергии граничных орбиталей атомов тяжелых металлов: HOMO — высшая заполненная молекулярная орбиталь, LUMO — низшая свободная молекулярная орбиталь.

При расчётах квантово-химических параметров реакционной способности извлекаемых форм изучаемых металлов было учтено, что их катионы во флотационных системах находятся в виде аквакатионов и аквагидроксокомплексов, т. е. они, согласно концепции R. Pearson и R. Parr [3, 5], в реакциях комплексообразования с реагентами-собирателями являются кислотами Льюиса, содержащими электрофильные центры с электроноакцепторными свойствами. Количественно электрофильность (и реакционную способность) различных извлекаемых форм, согласно R. Parr [4], можно оценить, используя индекс глобальной электрофильности IЕ, который рассчитывается, как  В сложных по составу извлекаемых формах изучаемых металлов более значимым критерием, характеризующим способность металла к электрофильной атаке при взаимодействии с реагентом-нуклеофилом является индекс локальной электрофильностиIЕ+, его рассчитывали значения с учетом функции Фукуи [1] : .

Расчеты квантово-химических параметров проводились полуэмпирическим методом РМ3 в приближении RHF/6–311G(d) [2]. Полученные результаты представлены в табл. 1.

Таблица 1

Рассчитанные квантово-химические параметры реакционной способности

для различных форм тяжелых металлов, извлекаемых из водных растворов

Извлекаемые формы металлов

ЕНОМО

ELUМО

η, эВ

χ,эВ

Ѕ, эВ-1

IЕ, эВ

IЕ+, эВ

Zn2+

*

-18,532

-

-

-

-

-

Cu2+

-48,159

-28,194

19,965

38,177

0,050

36,501

-

Fe2+

-41,692

-27,589

14,103

34, 641

0,071

42,544

-

Fe3+

-57,190

-43,029

14,161

50,110

0,071

88,659

-

Mn2+

-41,898

-28,726

13,172

35,312

0,076

47,33

-

Zn(OH)2

-11,589

-0,162

11,427

5,876

0,089

1,511

0,783

Cu(OH)2

-11,510

-0,275

11,230

5,893

0,089

1,546

0,658

Fe(OH)2

-11,361

-0,623

10,738

5,992

0,093

1,672

0,582

Fe(OH)3

-10,744

-0,891

9,853

5,818

0,102

1,718

0,339

Mn(OH)2

-10,562

-1,299

9,263

5,931

0,108

1,900

0,193

[Zn(H2O)6]2+

-21,484

-9,648

11,836

15,566

0,085

10,236

3,050

[Zn(H2O)4]2+

-23,268

-10,891

12,377

17,080

0,081

11,785

5,480

[Zn(H2O)2]2+

-25,081

-13,626

11,455

19,354

0,087

16,350

12,083

[Cu(H2O)6]2+

-18,761

-9,171

9,590

13,966

0,104

10,169

0,539

[Cu(H2O)4]2+

-20,242

-10,602

9,640

15,422

0,104

12,336

1,209

[Cu(H2O)2]2+

-27,324

-14,283

13,041

20,804

0,076

16,594

3,713

Примечание: «-» обозначает, что расчёты не проводились; *- параметризация полуэмпирических методов не позволяет определять энергии ЕНОМО диамагнитных ионов с закрытой электронной оболочкой

Проанализировав полученные результаты, можно отметить, что катионы металлов, за исключением Zn2+ (диамагнитный ион), характеризуются высокими значениями абсолютной жёсткости и химического потенциала (эВ): от 19,965 и 38,177 (Cu2+) до 13,172 и 35,312 (Mn2+), соответственно. Наибольший химический потенциал наблюдается у ионов Fe3+ (50,110 эВ). Такие высокие значения η и χ катионов металлов говорят об их значительной химической активности и о склонности к электрофильным свойствам. Химический потенциал всех исследуемых гидроксоаквакомплексов металлов примерно одинаков и составляет -6 эВ, что говорит об одинаковой абсолютной электроотрицательности молекул, находящихся в гидроксидной форме извлечения.

Абсолютная жёсткость гидроксидов марганца (II), железа (II, III), меди (II) и цинка меняется в пределах 9,263–11,43 эВ. Абсолютная жёсткость молекулы Cu(OH)2 (11,23 эВ) на 1,64 эВ больше, чем у аквакатионов [Cu(H2O)6]2+, в виде которых ионы меди (II) преимущественно находятся в кислых растворах, что позволяет говорить о большей жёсткости меди (II) в структуре Cu(OH)2 и, следовательно, о большей эффективности взаимодействия гидроксида меди (II) с органическими реагентами согласно принципу Пирсона [3, 5]. Подтверждением вышесказанного может служить сравнение рассчитанных индексов IЕ+ меди (II) в извлекаемых формах: реакционная способность Cu(OH)2 выше, чем у [Cu(H2O)6]2+, так как больше  на 0,12 эВ, следовательно, доминирующей формой извлечения ионов Cu2+ будет гидроксидная.

Для ионов Zn2+, ввиду их диамагнитных свойств, возможные извлекаемые формы цинка Zn(OH)2 и [Zn(H2O)6]2+ характеризуются близкими значениями абсолютной жёсткости: 11,427 эВ и 11,836 эВ. Однако химический потенциал ионов цинка в аквакатионной форме значительно выше (15,566 эВ), чем в гидроксидной форме (5,876 эВ), что позволяет прогнозировать и большую реакционную способность [Zn(H2O)6]2+ во флотационной системе в сравнении с Zn(OH)2. Это подтверждается и значениями индексов локальной электрофильности цинка в указанных формах:> на 2,3 эВ. Так как χ [Zn(H2O)6]2+> χ [Cu(H2O)6]2+на 1,6 эВ, можно предположить, что активность цинка в аквакатионной форме выше, чем у меди в такой же форме.

Значение индекса локальной электрофильности Mn2+ (0,193 эВ) — самое низкое в представленном ряду, что может свидетельствовать о его меньшей активности при взаимодействии с нуклеофильными центрами реагентов-собирателей. Вероятно, его извлечение методом ионной флотации будет неэффективным из-за слабой реакционной способности марганца (II) по отношению к нуклеофильным центрам реагентов.

Общая или глобальная электрофильность гидроксидов металлов первого переходного ряда снижается от Mn(OH)2 кZn(OH)2, что указывает на уменьшение в данном ряду положительной электростатической составляющей энергии межмолекулярных взаимодействий: гидроксид Ме: Mn(OH)2>Fe(OH)3>Fe(OH)2>Cu(OH)2>Zn(OH)2

IЕ, эВ: 1,900 1,718 1,672 1,546 1,511

Согласно W. Yang и W. Mortier [6], возникновение конкуренции между гидроксидами переходных металлов при их взаимодействии с молекулами реагентов-нуклеофилов возможно при разнице значений электрофильности гидроксидов не менее 0,4 эВ. Выполнение этого условия позволит проводить селективное извлечение металлов из растворов. Так как в приведенном выше ряду разница значений электрофильности даже между крайними членами ряда — Mn(OH)2 и Zn(OH)2 — меньше 0,4 эВ, возможно только коллективное извлечение гидроксидных форм изучаемых субстратов, их последовательное избирательное взаимодействие с органическим реагентом невозможно.

При сравнении полученных результатов квантово-химических исследований субстратов Mn(OH)2, MnO(OH) и MnO(OH)2 отмечаются следующие зависимости: а) абсолютная жесткость субстратов увеличивается в ряду Mn(OH)2>MnO(OH) >MnO(OH)2, что позволяет выделить молекулы MnO(OH) и MnO(OH)2 как наиболее стабильные и конформационно устойчивые структуры во флотационной системе.

Выводы:

-          Абсолютная жёсткость молекулы Cu(OH)2 (11,23 эВ) больше, чем у иона [Cu(H2O)6]2+ (9,59 эВ), на 1,64 эВ, и индекс локальной электрофильностиCu(OH)2 выше, чем у [Cu(H2O)6]2+ на 0,12 эВ, что позволяет говорить о бóльшей реакционной способности гидроксида меди (II) по отношению к нуклеофильным центрам хемосорбции реагентов.

-          Для ионов Zn2+, ввиду их диамагнитных свойств, извлекаемые формы Zn(OH)2 и [Zn(H2O)6]2+ характеризуются близкими значениями абсолютной жёсткости (11,427 эВ и 11,836 эВ, соответственно). Однако при взаимодействии с нуклеофильными центрами реагентов преимущество имеет гидратированная структура цинка, т. к. для нее  больше  на 2,3 эВ.

-          Среди изученных катионов металлов самое низкое значение индекса локальной электрофильности у катионов Mn2+ (0,193 эВ), что свидетельствует о его низкой электрофильной активности при взаимодействии с нуклеофильными центрами реагентов-собирателей.

Литература:

1.         Ayers P. W., Parr R. G. Variation Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited // J. Am. Chem. Soc. 2000. V. 122. P. 2010.

2.         Chattaraj P. K., Maiti В., Sarkar U. A Unified Treatment of Chemical Reactivity and Selectivity // J. Phys. Chem. 2003. V. 107. P. 4973–4975.

3.    Parr R. G., Pearson R. G. Absolute hardness: companion parameter to absolute electronegativity // J. Am. Chem. Soc. 1983. V. 105. P. 7512–7516.

4.    Parr R. G., Szentpaly L., Liu S. Electrophilicity Index // J. Am. Chem. Soc. 1999. V. 121. Р. 1922–1930.

5.         Pearson R. G. Chemical hardness and density functional theory // J. Chem. Ski. 2005. V. 117. № 5. P. 369–377.

6.         Yang W., Mortier W. J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines // J. Am. Chem. Soc. 1986. V. 108. Р. 5708–5712.

7.         Влияние квантово-химических параметров органических соединений на их сорбционные свойства / Варламова И. А., Гиревая Х. Я., Калугина Н. Л., Медяник Н. Л. Депонированная рукопись № 110-В2009. 26.02.2009.

8.    Гольман A. M. Ионная флотация. М.: Недра, 1982. 144 с.

9.         Изучение свойств органических молекул квантово-химическими методами / Медяник Н. Л., Калугина Н. Л., Варламова И. А., Гиревая Х. Я., Бодьян Л. А. Депонированная рукопись № 224-В2013 01.08.2013

10.     Медяник Н. Л., Варламова И. А., Калугина Н. Л. Квантово-химический метод подбора органических реагентов-комплексообразователей для селективного извлечения катионов цинка и меди (II) из растворов // В сборнике: Химия. Технология. Качество. Состояние, проблемы и перспективы развития. Сборник материалов международной заочной научно-технической конференции. Под ред. Медяник Н. Л.. 2012. С. 3–12.

11.     Методология создания ресурсовоспроизводящих технологий переработки техногенного гидроминерального сырья / Медяник Н. Л., Калугина Н. Л., Варламова И. А., Строкань А. М. // Вестник Магнитогорского государственного технического университета им. Г. И. Носова. 2011.№ 1. С. 5–9.

12.     Прогнозирование флотационной активности реагентов для извлечения цинка и меди (II) по квантово-химическим дескрипторам / Медяник Н. Л., Варламова И. А., Калугина Н. Л., Строкань А. М. // Известия высших учебных заведений. Горный журнал. 2011. № 3. С. 83–89.

13.     Радушев А. В., Чеканова Л. Г., Гусев В. Ю. Гидразиды и 1,2-диацилгидразиды. Получение, свойства и применение в процессах концентрирования металлов. Екатеринбург: Уральский центр академического обслуживания, 2010. 140 с.

14.     Скрылев Л. Д., Cазонова В. Ф., Скрылева Т. Л. Влияние растворимости сублата на эффективность флотационного выделения ионов тяжелых металлов, собранных с помощью жирнокислотных собирателей // Химия и технология воды. 1992. Т. 14. № 5. С. 386–389.

15.     Физико-химические закономерности извлечения тяжелых металлов из техногенных гидроминеральных месторождений / Варламова И. А., Гиревая Х. Я., Калугина Н. Л., Куликова Т. М., Медяник Н. Л. Магнитогорск, 2010.

Основные термины (генерируются автоматически): тяжелых металлов, ионной флотации, методом ионной флотации, катионов металлов, извлечения тяжелых металлов, квантово-химических параметров, форм тяжелых металлов, реакционной способности, значениями абсолютной жёсткости, взаимодействии с нуклеофильными центрами, катионы металлов, в процессе ионной флотации, техногенных вод, близкими значениями абсолютной, извлечению катионов металлов, выделения тяжелых металлов, извлечения тяжёлых металлов, растворах катионы металлов, локальной электрофильности, ионов тяжелых металлов.

Обсуждение

Социальные комментарии Cackle
Задать вопрос