Автор: Филиппенко Виктор Игнатьевич

Рубрика: Математика

Опубликовано в Молодой учёный №15 (74) сентябрь-2 2014 г.

Дата публикации: 05.09.2014

Статья просмотрена: 32 раза

Библиографическое описание:

Филиппенко В. И. Спектральные разложения квазидифференциальных операторов // Молодой ученый. — 2014. — №15. — С. 1-4.

Теорема о спектральном разложении самосопряженных линейных операторов, по мнению многих авторов, является одной из самых удачных математических абстракций. Она имеет множество приложений в функциональном анализе и в математической физике и играет существенную роль в обосновании квантовой механики. С тех пор как эта теорема была впервые доказана Д. Гильбертом, ее содержание значительно расширилось. В настоящем сообщении построено спектральное разложение симметрического оператора, порожденного в гильбертовом пространстве, функций суммируемых с квадратом модуля, некоторой обобщенной квазидифференциальной операцией.

Рассмотрим симметрический оператор , действующий в гильбертовом пространстве  и имеющий плотную в пространстве  область определения . Оператор  не предполагается самосопряженным, так что он является частью сопряженного с ним оператора . В общем случае  .

Функция , определенная для любого вещественного , называется спектральной функцией оператора , если выполнены следующие условия:

а) для любого вещественного   есть позитивный оператор;

б) для любого элемента  гильбертова пространства  в котором рассматриваются и , не убывает при возрастании параметра ;

в) для любого элемента  гильбертова пространства   есть непрерывная слева в смысле нормы элемента функция параметра ;

г) для любого элемента  гильбертова пространства  , если

, и , если . Причем эти предельные соотношения рассматриваются в смысле нормы элемента;

д) если  — любой конечный промежуток и - любой элемент из пространства , то имеют место соотношения:

                                                                          (1)

где .

1. Спектральная функция называется ортогональной, если  есть оператор ортогонального проектирования при любом вещественном значении . Если оператор - самосопряженный, то он имеет только одну спектральную функцию и она — ортогональна. Обратно, всякая ортогональная спектральная функция однозначно определяет самосопряженный оператор . Если же оператор  несамосопряженный, то он имеет неортогональные спектральные функции.

Согласно известной теореме М. А. Наймарка, для любой спектральной функции  оператора  существует в некотором гильбертовом пространстве  такое самосопряженное расширение оператора , что ортогональная спектральная функция  оператора  связана с  формулой

                                                                                                   (2)

где  — оператор ортогонального проектирования.

Учитывая (1), можно рассматривать равенство

                                                                                                                  (3)

как разложение по обобщенным собственным элементам оператора .

Для спектральных функций  симметрического оператора , действующих в абстрактном гильбертовом пространстве, показано, что и в этом случае имеются «краевые условия», зависящие от параметра , которым удовлетворяют обобщенные собственные элементы оператора , участвующие в разложении (3).

Пусть  — какое-либо разложение единицы в , а  и  — фиксированные вещественные числа. Обозначим через  линейное многообразие векторных функций , принимающих значения в гильбертовом пространстве  и допускающих представление , где  — произвольные непрерывные комплекснозначные функции параметра , а  — произвольные элементы из пространства . Для различных векторных функций эти элементы и их число могут быть разными.

Для любых вектор-функций  существует интеграл

,                                                (4)

где .

Введем в рассмотрение совокупность  вектор-функций , которые принимают значения в пространстве , и, кроме того, удовлетворяют следующему условию: при любом  для функции  существует такая функция , что выполняется следующее условие: , где  и  имеют прежний смысл. Множество  является, очевидно, линейным многообразием и вместе с векторной функцией  ему принадлежит также , какова бы ни была непрерывная комплекснозначная функция . Легко убедиться, что при любых  и  из совокупности  существует интеграл (4).

Если значения интеграла (4) принять за скалярное произведение  векторных функций  и , то  превратится в гильбертово пространство, в общем случае — неполное. Пополнение пространства  является, очевидно, пополнением и для пространства в этой же метрике. Заметим, что пополнение пространства  совпадает по существу с пространством , которое можно использовать при оценке кратности спектра самосопряженного расширения оператора  [1].

Лемма. Если  есть спектральная функция симметрического оператора , то для любых вектор-функций ,  существует операторный интеграл Стилтьеса  и имеет место формула =.

2. Пусть матрица  имеет размерность  и составлена из комплекснозначных функций, определенных на интервале  и удовлетворяющих следующим условиям:

(i)  в интервале  для индексов, удовлетворяющих неравенствам ;

(ii)  — локально суммируемы, т. е.  для ;

(iii)  в  для .

Определим квазипроизводные  следующим образом:

.

Этот подход к определению квазипроизводных и соответствующего формально самосопряженного квазидифференциального выражения предложен в работе [2]. В дальнейшем предполагаем, что функции  и их квазипроизводные до - го порядка включительно абсолютно непрерывны на любом компактном подынтервале промежутка . Поскольку в дальнейшем будем рассматривать только симметрические квазидифференциальные выражения, то предположим, что матрица , кроме требований (i), (ii) и (iii), удовлетворяет также условию симметричности: , где  — матрица, сопряженная к матрице ,  — символ Кронекера. Легко убедиться, что , где  — натуральное число. Матрица  — косоэрмитова, если натуральное число  — четно, а матрицы  — косоэрмитовы, если натуральное число  — нечетно. Можно считать, что скалярное дифференциальное выражение , где  — мнимая единица, порождается матрицей . Квазидифференциальная операция  определяет минимальный замкнутый симметрический оператор  в гильбертовом пространстве .

Пусть, например, симметрический квазидифференциальный оператор с минимальной областью определения в пространстве , порожденный квазидифференциальным выражением  порядка . Концы рассматриваемого промежутка  не предполагаются регулярными, т. е. могут быть сингулярными. В этом случае формула (3) реализуется в виде разложения по решениям уравнения

,                                                                                                                 (5)

Решения уравнения (5) играют роль обобщенных собственных элементов оператора .

Для любых функций  и , к которым применима квазидифференциальная операция , имеет место обобщенная формула Лагранжа

,                                                                                         (6)

где . Интегрируя почленно левую и правую части формулы Лагранжа (6), получим формулу Грина

,

где . Пусть  — квазипроизводные функции , а , составленный из этих квазипроизводных, — вектор-столбец. Заметим, что , где  — скалярное произведение в - мерном евклидовом пространстве. Матрица , если - четно, и , если  — нечетно, позволяет тождество Лагранжа можно переписать в виде .

Теорема 1. Пусть  — матрица-функция, удовлетворяющая условиям: (i), (ii), (iii). Квазидифференциальная операция  задана обычным образом. Дополнительно предположим, что функции  — локально суммируемы на рассматриваемом промежутке. Кроме того, предположим, что функция  положительна на промежутке . Тогда для любого комплексного числа , любого вещественного числа  и любых комплексных чисел , существует единственное решение , заданное на промежутке , начальной задачи  при условии .

Доказательство в целом повторяет рассуждения, приведенные в [3, 4].

Теорема 2. Пусть , , матрица , удовлетворяет требованиям (i) — (iii) и условию симметричности. Тогда для любых комплексных чисел  существует функция , принадлежащая области определения  операции , такая что

3. Как известно, каждой спектральной функции  оператора

отвечает некоторая обобщенная резольвента , определяемая формулой

.

При помощи формулы обращения Стилтьеса спектральная функция  однозначно восстанавливается по обобщенной резольвенте ; для любых функций  и  из  и любых вещественных  и  имеет место равенство:

.                                                             (7)

Равенство (7) позволяет построить формулу всех спектральных функций  оператора .

Пусть  — какая-либо обобщенная резольвента оператора  и  — ее характеристическая матрица. При любых вещественных  определим матрицу  формулой

.                                                                                   (8)

Формула (8) имеет смысл при любом вещественном  и  является неубывающей матричной функцией. Матрицу  называют спектральной функцией распределения оператора , соответствующей обобщенной резольвенте .

Пусть  — гильбертово пространство - мерных векторных функций , которые будем рассматривать как одностолбцевые матричные функции; скалярное произведение в пространстве  определяется формулой .

Теорема 3. Для любой функции  имеет место равенство , где ; а несобственный интеграл  сходится в смысле метрики пространства .

Литература:

1.         Филиппенко В. И. Линейные квазидифференциальные операторы в гильбертовом пространстве // Исследования по функциональному анализу и его приложениям.- М.: Наука, 2006. С. 293–344.

2.         Everitt, W. N. Generalized symmetric ordinary differential expressions 1: The general theory / W. N. Everitt, A. Zettl // Nieuw Archief Vood Wiskunde, 1979. — V. 27, № 3. — P. 363–397.

3.         Филиппенко В. И. Обобщенные резольвенты неплотно заданного квазидифференциального симметрического оператора // Труды участников Международной школы-семинара по геометрии и анализу памяти Н. В. Ефимова, 5–11 сентября 2006 года. Ростов-на-Дону: Изд-во ООО «ЦВВР», 2006. — С. 167–169.

4.         Фетисов В. Г. Исследования по теории операторов и их приложениям. Монография [Текст] / В. Г. Фетисов, В. И. Филиппенко. — Шахты: Изд-во ЮРГУЭС, 2008. — 185 с.

Основные термины (генерируются автоматически): симметрического оператора, спектральная функция, спектральной функции оператора, в гильбертовом пространстве, векторных функций, ортогональная спектральная функция, спектральная функция оператора, спектральной функцией оператора, функция симметрического оператора, функций симметрического оператора, разложение симметрического оператора, элемента гильбертова пространства, натуральное число, скалярное произведение, спектральных функций оператора, квазидифференциального симметрического оператора, минимального квазидифференциального оператора, с ним оператора, в смысле нормы элемента, собственные элементы оператора.

Обсуждение

Социальные комментарии Cackle
Задать вопрос