Моделирование системы АИН ШИМ – линейный асинхронный двигатель (Z1 = 12) с классическим типом обмотки с нулевым проводом | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 18 июля, печатный экземпляр отправим 22 июля.

Опубликовать статью в журнале

Библиографическое описание:

Моделирование системы АИН ШИМ – линейный асинхронный двигатель (Z1 = 12) с классическим типом обмотки с нулевым проводом / А. А. Емельянов, А. В. Кобзев, Ю. П. Бочкарев [и др.]. — Текст : непосредственный // Молодой ученый. — 2014. — № 4 (63). — С. 47-60. — URL: https://moluch.ru/archive/63/10101/ (дата обращения: 09.07.2020).

В работе [1] рассматривался процесс математического моделирования линейного асинхронного двигателя (2p = 2, Z1 = 12) на основе магнитных схем замещения. Питание обмотки индуктора (соединение «звезда» с нулевым проводом, классический тип укладки обмотки) осуществлялось от источника трехфазного синусоидального напряжения.

В данной работе рассматривается процесс математического моделирования линейного асинхронного двигателя (ЛАД) при питании от трехфазного автономного инвертора напряжения с широтно-импульсной модуляцией (АИН ШИМ). Результаты этой работы будут основой для создания учебно-лабораторной установки по исследованию системы АИН ШИМ – ЛАД.

Функциональная схема системы трехфазный автономный инвертор напряжения с ШИМ- линейный асинхронный двигатель приведен на рис. 1.

В этой схеме приняты следующие обозначения:

-       и - задающие гармонические воздействия:

-       – опорное напряжение, представляющее собой пилообразное, двухстороннее, симметричное напряжение с частотой модуляции значительно превышающей частоту напряжения задания.


Рис. 1. Функциональная схема системы «АИН ШИМ – ЛАД» с нулевым проводом


-          и – нуль-органы, обеспечивающие сравнение сигналов задания с опорным сигналом. Если  то выходные сигналы нуль-органов  иначе

-         

АД (2p=2, Z1=6)

 
 и и и – формирователи сигналов управления силовыми ключами. Формирователи сигналов управления имеют взаимно инверсные релейные характеристики [2] и сепаратируют сигнал нуль-органа НО по двум каналам управления ключами инвертора. Кроме того предусматривают небольшие временные задержки включения ключей. Это необходимо для предотвращения коротких замыканий источника постоянного напряжения  через силовые ключи инвертора.

-          и и и - дискретные выходные сигналы с формирователей, управляющих включением силовыми ключами.

-          и  и  и  – силовые ключи, попеременно подключающие обмотки фаз двигателя к разноименным полюсам источника постоянного напряжения .

Цифровой алгоритм расчета опорного сигнала ШИМ приведен в работе [3]. Программирование выходных сигналов нуль-органов произведен в MATLAB и имеет следующий вид:

dt=0.00001;

U0=1;

tau=0;

time=0;

u0p(1)=1;

pwm=-2;

f_sin=50;

f_triangle=1000;

for i=1:8000

    tau(i+1)=tau(i)+dt*f_triangle;

    time(i+1)=time(i)+dt;

    s(i+1)=3*sin(2*pi*f_sin*time(i+1));

    s_pi3(i+1)=3*sin(2*pi*f_sin*time(i+1)+pi/3);

    if tau(i+1)>=1

       tau(i+1)=tau(i+1)-1;

    end

    if (tau(i+1)>=0) && (tau(i+1)<0.5)

        f(i)=1-4*tau(i+1);

    else

        f(i)=4*tau(i+1)-3;

    end

    u0p(i+1)=U0*f(i);

    if (s(i+1)>=u0p(i+1))

        pwm(i+1)=2;

    else

        pwm(i+1)=-2;

    end

    if (s_pi3(i+1)>=u0p(i+1))

        pwm_pi3(i+1)=2;

    else

        pwm_pi3(i+1)=-2;

    end

end

subplot(2,1,1);

plot(time,s,time,u0p,time,pwm);

hold on;

axis([0 0.04 -4 4]);

subplot(2,1,2);

plot(time,s_pi3,time,u0p,time,pwm_pi3);

hold on;

axis([0 0.04 -4 4]);

Результаты сравнений с для трех значений ( и ) приведены на рис. 2, 3 и 4 соответственно (сплошными линиями обозначены выходные сигналы с нуль-органа).

Рис. 2. Сигнал на выходе нуль-органа при

Рис. 3. Сигнал на выходе нуль-органа при

Рис. 4. Сигнал на выходе нуль-органа при

Формирователи сигналов управления силовыми ключами ( и и и ) задают программу подключения фаз обмоток двигателя к источнику постоянного напряжения .

Фазное напряжение в обмотке двигателя представляет собой пятиуровневую импульсную функцию [2] со значениями:

Импульсные напряжения, подаваемые на двигатель, и связаны с постоянным напряжением и выходными сигналами нуль-органов  и по следующей зависимости [2]:

  

Уравнения (*) для решения в программном пакете MATLAB примут следующий вид:

dt=0.00001;

U0=1;

tau=0;

time=0;

u0p(1)=1;

pwm=-1;

um=2;

f_sin=50;

f_triangle=1000;

Um=310/2;

up=Um;

for i=1:8000

    tau(i+1)=tau(i)+dt*f_triangle;

    time(i+1)=time(i)+dt;

    s(i+1)=um*sin(2*pi*f_sin*time(i+1));

    s_2pi3(i+1)=um*sin(2*pi*f_sin*time(i+1)+2*pi/3);

    s_4pi3(i+1)=um*sin(2*pi*f_sin*time(i+1)+4*pi/3);

    if tau(i+1)>=1

 tau(i+1)=tau(i+1)-1;

    end

    if (tau(i+1)>=0) && (tau(i+1)<0.5)

  f(i)=1-4*tau(i+1);

    else

  f(i)=4*tau(i+1)-3;

    end

    u0p(i+1)=U0*f(i);

    if (s(i+1)>=u0p(i+1))

  pwm(i+1)=2;

    else

  pwm(i+1)=-2;

    end

    if (s_2pi3(i+1)>=u0p(i+1))

        pwm_2pi3(i+1)=2;

    else

        pwm_2pi3(i+1)=-2;

    end

    if (s_4pi3(i+1)>=u0p(i+1))

        pwm_4pi3(i+1)=2;

    else

        pwm_4pi3(i+1)=-2;

    end

PWM(i+1)=up*(1/2)*((2*(pwm(i+1)))/3-(pwm_2pi3(i+1))/3-(pwm_4pi3(i+1))/3);

PWM_2pi3(i+1)=up*(1/2)*(-pwm(i+1)/3+(2*pwm_2pi3(i+1))/3-pwm_4pi3(i+1)/3);

PWM_4pi3(i+1)=up*(1/2)*(-pwm(i+1)/3-pwm_2pi3(i+1)/3+(2*pwm_4pi3(i+1))/3);

end

plot(time,PWM);

axis([0 0.02 -250 250]);

Результаты расчета фазного напряжения для задающих сигналов с  и приведены на рис. 5, 6 и 7 соответственно.

Рис. 5. Импульсное напряжение в фазе обмотки  при амплитуде задающего сигнала

Рис. 6. Импульсное напряжение в фазе обмотки  при амплитуде задающего сигнала

Рис. 7. Импульсное напряжение в фазе обмотки  при амплитуде задающего сигнала

Программирование системы «АИН ШИМ - ЛАД» на языке высокого уровня MATLAB имеет следующий вид:

% Математическая модель ЛАД с укладкой статорной обмотки классическим

% способом (z=12) с нулевым проводом

  function lad_z12_zero_PWM

% Исходные данные асинхронного двигателя

  Rb=0.1003*10^7;

  rs=9.5;

  LsA=0.037;

  LsB=0.038;

  LsC=0.035;

  rr=4.6345*10^-5;

  Lr=0.0372*10^-5;

  dt=0.000011;

  As=rs+LsA/dt;

  Bs=rs+LsB/dt;

  Cs=rs+LsC/dt;

  tz=9.769*10^-3;

  m=1.9*0.5;

  v0=0;

  wn=200;

  f=50;

  w=2*pi*f;

  UA=wn/dt;

  X=zeros(24,1);

  F=0;

  um=1;

  kinv=190*0.5;

% начальные условия для ШИМ

  tau=0;

  time=0;

  U0=1;

  u0p(1)=1;

  pwm=-1;

  f_triangle=1000;

  f_sin=50;

  K=input('длительность цикла k=');

  for k=1:(K+1)

% ШИМ

  tau(k+1)=tau(k)+dt*f_triangle;

  time(k+1)=time(k)+dt;

  s(k+1)=um*sin(2*pi*f_sin*time(k+1));

  s_2pi3(k+1)=um*sin(2*pi*f_sin*time(k+1)-2*pi/3);

  s_4pi3(k+1)=um*sin(2*pi*f_sin*time(k+1)-4*pi/3);

  if tau(k+1)>=1

           tau(k+1)=tau(k+1)-1;

  end

        if (tau(k+1)>=0) && (tau(k+1)<0.5)

            f(k)=1-4*tau(k+1);

        else

            f(k)=4*tau(k+1)-3;

        end

        u0p(k+1)=U0*f(k);

        if (s(k+1)>=u0p(k+1))

            pwm(k+1)=2;

        else

            pwm(k+1)=-2;

        end

        if (s_2pi3(k+1)>=u0p(k+1))

            pwm_2pi3(k+1)=2;

        else

            pwm_2pi3(k+1)=-2;

        end

        if (s_4pi3(k+1)>=u0p(k+1))

            pwm_4pi3(k+1)=2;

        else

            pwm_4pi3(k+1)=-2;

        end

  PWM(k+1)=kinv*(1/2)*((2*(pwm(k+1)))/3-(pwm_2pi3(k+1))/3-(pwm_4pi3(k+1))/3);

        PWM_2pi3(k+1)=kinv*(1/2)*(-pwm(k+1)/3+(2*pwm_2pi3(k+1))/3-pwm_4pi3(k+1)/3);

        PWM_4pi3(k+1)=kinv*(1/2)*(-pwm(k+1)/3-pwm_2pi3(k+1)/3+(2*pwm_4pi3(k+1))/3);

        v(1,k)=v0;      %создание вектор-строки для графика скорости

        f(1,k)=sum(F);  %Создание вектор-строки для  графика усилия

        i0(1,k)=X(24);

        i_a(1,k)=X(21);

        i_b(1,k)=X(23);

        i_c(1,k)=X(22);

% Формирование матрицы А

        A=zeros(24);

        B=2*Rb*(rr+Lr/dt)+1/dt;

        B1=6*Rb*(rr+Lr/dt)+(-4*Rb)*Lr*v0/(2*tz)+1/dt;

        B2=55*Rb*(rr+Lr/dt)+(-45*Rb)*Lr*v0/(2*tz)+1/dt;

        B3=550*Rb*(rr+Lr/dt)+(-450*Rb)*Lr*v0/(2*tz)+1/dt;

        B4=1000*Rb*(rr+Lr/dt)+1/dt;

        B5=550*Rb*(rr+Lr/dt)+450*Rb*Lr*v0/(2*tz)+1/dt;

        B6=55*Rb*(rr+Lr/dt)+(45*Rb)*Lr*v0/(2*tz)+1/dt;

        B7=6*Rb*(rr+Lr/dt)+(4*Rb)*Lr*v0/(2*tz)+1/dt;

        C=-Rb*(rr+Lr/dt)+(2*Rb*Lr+1)*v0/(2*tz);

        C1=-Rb*(rr+Lr/dt)+(6*Rb*Lr+1)*v0/(2*tz);

        C2=-5*Rb*(rr+Lr/dt)+(55*Rb*Lr+1)*v0/(2*tz);

        C3=-50*Rb*(rr+Lr/dt)+(550*Rb*Lr+1)*v0/(2*tz);

        C4=-500*Rb*(rr+Lr/dt)+(1000*Rb*Lr+1)*v0/(2*tz);

        C5=-500*Rb*(rr+Lr/dt)+(550*Rb*Lr+1)*v0/(2*tz);

        C6=-50*Rb*(rr+Lr/dt)+(55*Rb*Lr+1)*v0/(2*tz);

        C7=-5*Rb*(rr+Lr/dt)+(6*Rb*Lr+1)*v0/(2*tz);

        D=-Rb*Lr*v0/(2*tz);

        D1=5*D;

        D2=50*D;

        D3=500*D;

        E=-Rb*(rr+Lr/dt)-(2*Rb*Lr+1)*v0/(2*tz);

        E1=-5*Rb*(rr+Lr/dt)-(6*Rb*Lr+1)*v0/(2*tz);

        E2=-50*Rb*(rr+Lr/dt)-(55*Rb*Lr+1)*v0/(2*tz);

        E3=-500*Rb*(rr+Lr/dt)-(550*Rb*Lr+1)*v0/(2*tz);

        E4=-500*Rb*(rr+Lr/dt)-(1000*Rb*Lr+1)*v0/(2*tz);

        E5=-50*Rb*(rr+Lr/dt)-(550*Rb*Lr+1)*v0/(2*tz);

        E6=-5*Rb*(rr+Lr/dt)-(55*Rb*Lr+1)*v0/(2*tz);

        E7=-Rb*(rr+Lr/dt)-(6*Rb*Lr+1)*v0/(2*tz);

        T=-wn*Lr*v0/(2*tz);

        Y=-wn*(rr+Lr/dt);

  M=Y+T;

        N=Y-T;

        W1=-wn*Lr/dt;

        P=-Rb*Lr/dt;

        Q=(2*Rb*Lr+1)/dt;

        Q1=(6*Rb*Lr+1)/dt;

        Q2=(55*Rb*Lr+1)/dt;

        Q3=(550*Rb*Lr+1)/dt;

        Q4=(1000*Rb*Lr+1)/dt;

        for n=1:2

            A(n+4,21)=(2-n)*M+(n-1)*N;

            A(n+6,22)=(n-2)*M+(1-n)*N;

            A(n+8,23)=(2-n)*M+(n-1)*N;

            A(n+10,21)=(n-2)*M+(1-n)*N;

            A(n+12,22)=(2-n)*M+(n-1)*N;

            A(n+14,23)=(n-2)*M+(1-n)*N;

            A(8-n,n+20)=-T;

            A(10-n,n+21)=T;

            A(14-n,n+20)=T;

            A(16-n,n+21)=-T;

        end;

        for n=1:3

            A(24,n+20)=1;     %hh

        end;

            A(24,24)=-1;      %jgj

        for n=1:12

            A(n+4,n+4)=B;

            A(n+5,n+4)=E;

            A(n+3,n+4)=C;

        end;

        for n=1:13

            A(n+2,n+4)=D;

            A(n+5,n+3)=-D;

        end;

            A(1,1)=B4;

            A(1,2)=C5;

            A(1,3)=D2;

            A(2,1)=E4;

            A(2,2)=B5;

            A(2,3)=C6;

            A(2,4)=D1;

            A(3,1)=-D3;

            A(3,2)=E5;

            A(3,3)=B6;

            A(3,4)=C7;

            A(4,2)=-D2;

            A(4,3)=E6;

            A(4,4)=B7;

            A(5,3)=-D1;

            A(5,4)=E7;

            A(16,17)=C1;

            A(16,18)=D1;

            A(17,17)=B1;

            A(17,18)=C2;

            A(17,19)=D2;

            A(18,17)=E1;

            A(18,18)=B2;

            A(18,19)=C3;

            A(18,20)=D3;

            A(19,17)=-D1;

            A(19,18)=E2;

            A(19,19)=B3;

            A(19,20)=C4;

            A(20,18)=-D2;

            A(20,19)=E3;

            A(20,20)=B4;

        for n=1:2

            A(21,n+4)=UA;

            A(21,n+10)=-UA;

            A(22,n+8)=UA;

            A(22,n+14)=-UA;

            A(23,n+6)=-UA;

            A(23,n+12)=UA;

        end;

            A(21,21)=As;

            A(22,23)=Bs;

            A(23,22)=Cs;

% Матрица свободных членов

        S=[          Q4*X(1)+P*(        500*X(2));                       %1

                     Q3*X(2)+P*(500*X(1)+50*X(3));                       %2

                     Q2*X(3)+P*(50*X(2)+5*X(4));                         %3

                     Q1*X(4)+P*(5*X(3)+X(5));                            %4

            W1*X(21)+Q*X(5)+P*(X(4)+X(6));                               %5

            W1*X(21)+Q*X(6)+P*(X(5)+X(7));                               %6

       (-1)*W1*X(22)+Q*X(7)+P*(X(6)+X(8));                               %7

       (-1)*W1*X(22)+Q*X(8)+P*(X(7)+X(9));                               %8

            W1*X(23)+Q*X(9)+P*(X(8)+X(10));                              %9

            W1*X(23)+Q*X(10)+P*(X(9)+X(11));                             %10

       (-1)*W1*X(21)+Q*X(11)+P*(X(10)+X(12));                            %11

       (-1)*W1*X(21)+Q*X(12)+P*(X(11)+X(13));                            %12

            W1*X(22)+Q*X(13)+P*(X(12)+X(14));                            %13

            W1*X(22)+Q*X(14)+P*(X(13)+X(15));                            %14

       (-1)*W1*X(23)+Q*X(15)+P*(X(14)+X(16));                            %15

       (-1)*W1*X(23)+Q*X(16)+P*(X(15)+X(17));                            %16

                     Q1*X(17)+P*(X(16)+5*X(18));                         %17

                     Q2*X(18)+P*(5*X(17)+50*X(19));                      %18

                     Q3*X(19)+P*(50*X(18)+500*X(20));                    %19

                     Q4*X(20)+P*500*X(19);                               %20

            UA*(X(5)+X(6)-X(11)-X(12))+(LsA/dt)*X(21)+PWM(k+1);          %21

            UA*(X(9)+X(10)-X(15)-X(16))+(LsB/dt)*X(23)+PWM_2pi3(k+1);    %22

            UA*(X(13)+X(14)-X(7)-X(8))+(LsC/dt)*X(22)+PWM_4pi3(k+1);     %23

            0];                                                          %24

% Решение методом Гаусса-Жордана

        Z=rref([A S]);    %Приведение расширенной матрицы к треугольному виду

        X=Z(1:24,25:25);  %Выделение последнего столбца из матрицы

% Ток в роторе

  Ir=[       1000*Rb*X(1)-Rb*(500*X(2));               %1

                    550*Rb*X(2)-Rb*(500*X(1)+50*X(3));       %2

                     55*Rb*X(3)-Rb*(50*X(2)+5*X(4));         %3

                      6*Rb*X(4)-Rb*(5*X(3)+X(5));            %4

            -wn*X(21)+2*Rb*X(5)-Rb*(X(4)+X(6));              %5

            -wn*X(21)+2*Rb*X(6)-Rb*(X(5)+X(7));              %6

     (-1)*(-wn)*X(22)+2*Rb*X(7)-Rb*(X(6)+X(8));              %7

     (-1)*(-wn)*X(22)+2*Rb*X(8)-Rb*(X(7)+X(9));              %8

            -wn*X(23)+2*Rb*X(9)-Rb*(X(8)+X(10));             %9

            -wn*X(23)+2*Rb*X(10)-Rb*(X(9)+X(11));            %10

     (-1)*(-wn)*X(21)+2*Rb*X(11)-Rb*(X(10)+X(12));           %11

     (-1)*(-wn)*X(21)+2*Rb*X(12)-Rb*(X(11)+X(13));           %12

            -wn*X(22)+2*Rb*X(13)-Rb*(X(12)+X(14));           %13

            -wn*X(22)+2*Rb*X(14)-Rb*(X(13)+X(15));           %14

     (-1)*(-wn)*X(23)+2*Rb*X(15)-Rb*(X(14)+X(16));           %15

     (-1)*(-wn)*X(23)+2*Rb*X(16)-Rb*(X(15)+X(17));           %16

                      6*Rb*X(17)-Rb*(X(16)+5*X(18));         %17

                     55*Rb*X(18)-Rb*(5*X(17)+50*X(19));      %18

                    550*Rb*X(19)-Rb*(50*X(18)+500*X(20));    %19

                   1000*Rb*X(20)-Rb*(500*X(19))];            %20

% Электромагнитное усилие

        F(1)=X(2)*Ir(1)/(2*tz);

        for n=1:18

            F(n+1)=(X(n+2)-X(n))*Ir(n+1)/(2*tz);

        end;

        F(20)=-X(19)*Ir(20)/(2*tz);

% Скорость

        v0=v0+(sum(F)/m)*dt;

  end;

% Построение графиков

 k=0:K;

 subplot(2,1,1);

 plot(k*dt,v);

 title('Скорость');

 xlabel('t,c');

 ylabel('v,m/c');

 grid on;

 subplot(2,1,2);

 plot(k*dt,f);

 title('Электромагнитное усилие');

 xlabel('t,c');

 ylabel('F,H');

 grid on;

 end

Временные диаграммы скорости и электромагнитного усилия линейного асинхронного двигателя при питании от АИН с амплитудой напряжения задания  и представлены на рис. 8, 9 и 10 соответственно.

Рис. 8. Результат моделирования асинхронного двигателя при

Рис. 9. Результат моделирования асинхронного двигателя при

Рис. 10. Результат моделирования асинхронного двигателя при

Зависимости токов , ,  и  даны на рис. 11 и 12.

Рис. 11. Временные зависимости , ,  и  при k = 5000 и

Рис. 12. Временные зависимости , ,  и при k = 50000  и

Литература:

1.         Емельянов А.А., Кобзев А.В., Козлов А.М., Бесклеткин В.В., Бочкарев Ю.П., Авдеев А.С., Киряков Г.А., Чернов М.В., Габзалилов Э.Ф., Иванин А.Ю. Программирование линейного асинхронного двигателя (Z1 = 12) с трехфазной обмоткой индуктора с нулевым проводом // Молодой ученый. – 2014. - №3. – С. 28-47.

2.         Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. — Екатеринбург: УРО РАН, 2000. — 654 с.

3.         Емельянов А.А., Медведев А.В., Кобзев А.В., Козлов А.М., Бесклеткин В.В., Бочкарев Ю.П., Авдеев А.С., Чернов М.В., Габзалилов Э.Ф., Киряков Г.А. Моделирование системы АИН ШИМ – линейный асинхронный двигатель (Z1 = 6) с обмоткой индуктора через ярмо // Молодой ученый. – 2013. - №11. – С. 18-28.

4.         Емельянов А.А., Медведев А.В., Кобзев А.В., Бочкарев Ю.П., Евдокимов О.В. Моделирование асинхронного двигателя с помощью магнитных и электрических схем замещения // Молодой ученый. – 2013. - №4. – С. 1-10.

Основные термины (генерируются автоматически): PWM, MATLAB, асинхронный двигатель, линейный асинхронный двигатель, результат моделирования, нулевой провод, импульсное напряжение, выходной сигнал нуль-органов, выход нуль-органа, электромагнитное усилие.


Похожие статьи

Моделирование системы АИН ШИМ — линейный асинхронный...

линейный асинхронный двигатель, PWM, MATLAB, прямой пуск, результат моделирования, нулевой провод, Создание вектор-строки, выходной сигнал нуль-органов, импульсное напряжение, выход нуль-органа.

Моделирование системы АИН ШИМ – асинхронный двигатель...

PWM, асинхронный двигатель, MATLAB, выходной сигнал нуль-органов, сигнал управления, трехфазный автономный инвертор, опорный сигнал, математическое моделирование, выход нуль-органа, фазное напряжение.

Моделирование системы АИН ШИМ – асинхронный двигатель...

PWM, MATLAB, асинхронный двигатель, выходной сигнал нуль-органов, сигнал управления, электромагнитное усилие, математическое моделирование, трехфазный автономный инвертор, фазное напряжение...

Моделирование системы АИН ШИМ – линейный асинхронный...

MATLAB, функциональная схема, линейный асинхронный двигатель, выходной сигнал нуль-органов, электромагнитное усилие, катушка индуктора, ключ инвертора, математическое моделирование, опорный сигнал...

Моделирование системы АИН ШИМ — асинхронный двигатель...

Если , то выходные сигналы нуль-органов , иначе

Реализация импульсных напряжений в неподвижной трехфазной системе координат abcпредставлена в Simulink-Matlab на рис. 6. Результаты моделирования напряжений даны на рис. 7.

Моделирование системы АИН ШИМ – линейный асинхронный...

Импульсные напряжения, подаваемые на двигатель, и связаны с постоянным напряжением и выходными сигналами нуль-органов и по следующей зависимости [2]: Уравнения (*) для решения в программном пакете MATLAB примут следующий вид

Моделирование САР скорости системы «АИН ШИМ – АД»...

% Выходные сигналы нуль-органов.

usa_pwm(k+1)=up*(1/6)*(2*fa(k+1)-fb(k+1)-fc(k+1))

Моделирование асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц.

Программирование линейного асинхронного двигателя...

В данной работе объектом рассмотрения является линейный асинхронный двигатель с числом пазов индуктора равным шести (Z1 = 6), математическая модель которого реализована в MATLAB [5]. На рис. 1,а приведен линейный асинхронный двигатель с одной парой полюсов...

Математическая модель САР скорости системы «АИН ШИМ...»

% Программирование задатчика интенсивности Matlab-Script.

Моделирование системы АИН ШИМ – линейный асинхронный двигатель (Z1 = 18) с классическим типом обмотки с нулевым проводом.

Похожие статьи

Моделирование системы АИН ШИМ — линейный асинхронный...

линейный асинхронный двигатель, PWM, MATLAB, прямой пуск, результат моделирования, нулевой провод, Создание вектор-строки, выходной сигнал нуль-органов, импульсное напряжение, выход нуль-органа.

Моделирование системы АИН ШИМ – асинхронный двигатель...

PWM, асинхронный двигатель, MATLAB, выходной сигнал нуль-органов, сигнал управления, трехфазный автономный инвертор, опорный сигнал, математическое моделирование, выход нуль-органа, фазное напряжение.

Моделирование системы АИН ШИМ – асинхронный двигатель...

PWM, MATLAB, асинхронный двигатель, выходной сигнал нуль-органов, сигнал управления, электромагнитное усилие, математическое моделирование, трехфазный автономный инвертор, фазное напряжение...

Моделирование системы АИН ШИМ – линейный асинхронный...

MATLAB, функциональная схема, линейный асинхронный двигатель, выходной сигнал нуль-органов, электромагнитное усилие, катушка индуктора, ключ инвертора, математическое моделирование, опорный сигнал...

Моделирование системы АИН ШИМ — асинхронный двигатель...

Если , то выходные сигналы нуль-органов , иначе

Реализация импульсных напряжений в неподвижной трехфазной системе координат abcпредставлена в Simulink-Matlab на рис. 6. Результаты моделирования напряжений даны на рис. 7.

Моделирование системы АИН ШИМ – линейный асинхронный...

Импульсные напряжения, подаваемые на двигатель, и связаны с постоянным напряжением и выходными сигналами нуль-органов и по следующей зависимости [2]: Уравнения (*) для решения в программном пакете MATLAB примут следующий вид

Моделирование САР скорости системы «АИН ШИМ – АД»...

% Выходные сигналы нуль-органов.

usa_pwm(k+1)=up*(1/6)*(2*fa(k+1)-fb(k+1)-fc(k+1))

Моделирование асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц.

Программирование линейного асинхронного двигателя...

В данной работе объектом рассмотрения является линейный асинхронный двигатель с числом пазов индуктора равным шести (Z1 = 6), математическая модель которого реализована в MATLAB [5]. На рис. 1,а приведен линейный асинхронный двигатель с одной парой полюсов...

Математическая модель САР скорости системы «АИН ШИМ...»

% Программирование задатчика интенсивности Matlab-Script.

Моделирование системы АИН ШИМ – линейный асинхронный двигатель (Z1 = 18) с классическим типом обмотки с нулевым проводом.

Задать вопрос