Библиографическое описание:

Джураева Ш. Д., Хидирова З. У. Синтез и квантово-химические характеристики нового азокрасителя // Молодой ученый. — 2014. — №2. — С. 245-248.

Разработан способ синтеза 2-метилфенил-азо-4'-гидрокси-6-бромофенил-карбокси-3' и изучены его квантово-химические характеристики.

Радость от восприятия цвета — одно из старейших культурно-эстетических чувств человечества. Уже в древние времена люди заботились о том, чтобы окрасить одежду и предметы домашнего обихода в красивые цвета. В религиозно-культовых обрядах, напротив, использовали устрашающие и отталкивающие расцветки. Во все времена цвет имел символическое значение, как это и сейчас выражается в цветах гербов и национальных флагов. Когда в 50-е годы XIX столетия органическая химия начала своё триумфальное шествие, одной из важнейших проблем, стоявших перед нею, являлось получение природных красителей синтетическим путем. [1]

В химии синтетических органических соединений особое развитие приобрели направления тонкого органического синтеза веществ, среди которых значительная роль отводится производным азофенолов. Развитие этой отрасли органической химии является проблемой, требующей глубокой разработки и научно-обоснованных подходов.

Разработка нового способа получения или синтеза новых соединений на основе различных функциональных групп и их практическое применение имеет широкие перспективы в решении первоочередных задач развития, прежде всего, в фармацевтике, медицине и сельском хозяйстве. Поэтому поиск и синтез, а также технология получения производных азокрасителей является актуальной задачей современного органического синтеза.

Разработан технологический процесс, состоящий из одной технологической линии, процесс периодический. Метод получения 2-метилфенил-азо-4'-гидрокси-6-бромофенил-карбокси-3' заключается во взаимодействии 2-метиланилина с 4-бром-2-гидроксибензойной кислотой в присутствии диазотирующей смеси (HCI+NaNO2) по нижеприведенной схеме:

Азосочетания приводят к образованию азокрасителей.

В процессе получения 2-метилфенил-азо-4'-гидрокси-6-бромофенил-карбокси-3' газообразные и твёрдые отходы не образуются. В качестве жидких отходов образуются водные слабые растворы NaCI и Н2О.

Готовый продукт 2-метилфенил-азо-4'-гидрокси-6-бромофенил-карбокси-3' представляет собой оранжевого цвета порошок с температурой плавления 217–2180С, растворяющийся в органических растворителях-НСООН, СН3СООН, ДМФА, ДМSО, нитробензоле, CCI4, ДМАЦ и многих других. Выход- 30,48 г (91 %)

Таблица 1

Физико-химические параметры красителя

Структурная формула

Выход %

ТплоС

Rf

Брутто формула

Элем.анал.N, %

Вычис %

Найд. %

91 %

217–2180С

0,64

C14H11BrN2O3

8,36

8,09

Молекулы азокрасителя содержат большую сопряженную систему и, кроме того, неподеленные пары на атомах азота. В зависимости от условий синтеза могут получаться таутомеры, цис-форма является нестабильным изомером, который быстро превращается в транс-форму-стабильный изомер с максимальным сопряжением [2].

Квантовая механика, в том числе, квантово-химическая характеристика, в принципе позволяет дать исчерпывающее объяснение любым экспериментальным данным о реакционной способности органических соединений и предсказать возможные направления реакций. Однако для реализации этих возможностей необходимо иметь мощные электронно-вычислительные машины и современные пакеты программ [3–4].

За последние годы в этих областях был достигнут существенный прогресс. Благодаря быстрому развитию квантовой химии были разработаны достаточно эффективные полуэмпирические и неэмпирические варианты методов изучения квантово-химических характеристик молекул, представляющих интерес, особенно для органической химии. С их помощью можно установить, какие факторы определяют направление и относительный выход продуктов реакции, а также получить недоступную для эксперимента информацию о геометрии и электронной структуре образующихся продуктов, а также переходных состояний. В большинстве прикладных квантово-химических работ приходится вычислять геометрию органических соединений. Такие расчеты проводят как для стабильных молекул, так и для короткоживущих — промежуточных интермедиатов и переходных состояний. Эти данные позволяют получить интересную информацию об их строении и поэтому представляют самостоятельный интерес с точки зрения органиков. Кроме того, знание геометрии молекулы необходимо для вычисления теплот образования, тепловых эффектов и энергии активации реакций. В связи с этим возникает вопрос о точности вычисления геометрии органических соединений приближенными методами квантовой химии, которые применяются повсеместно. Надо отметить, что сделать это на основе сравнения с экспериментом удается только для достаточно стабильных соединений.

Предсказание конкретной координации электронодонорных и акцепторных центров более сложных органических молекул, состоящих из разных гетероатомов, является весьма трудной и актуальной задачей органической химии. С развитием различных методов квантово-химических расчетов молекул, появилась возможность планирования экспериментальных исследований и проведения синтеза соединений с заранее заданной структурой и химическими свойствами [5]. Такие параметры также могут использоваться при определении технологических параметров процесса получения продуктов.

Исходя из этого были проведены исследования электронной плотности и распределения зарядов в молекулах исследованных соединений и определены их 3Д структуры полуэмпирическим кванто- химическим методом РМ 3. [6].

В качестве примера приведены результаты изучения геометрии и электронного строения, а также 3Д структуры 2-метилфенил-азо-4′-гидрокси-6-бромофенилкарбокси-3′. (Рис.1.)

Рис.1. (а) 3D структура 2-метилфенил-азо-4`-гирокси-6-бромо-фенил-карбокси-3`

Рис.1. (б) Распределение зарядов в молекуле 2-метилфенил-азо-4`-гирокси-6-бромо-фенил-карбокси-3`

Рис.1. (в) Распределение электронной плотности по атомам 2-метилфенил-азо-4`-гирокси-6-бромо-фенил-карбокси-3`

Рис.1. 3Д структуры (а), распределение зарядов (б) и электронной плотности (в) в молекуле 2-метилфенил-азо-4′-гидрокси-6-бромофенил карбокси-3′.

Из полученных данных видно, что распределение зарядов в молекуле 2-метилфенил-азо-4′-гидрокси-6-бромофенилкарбокси-3′ имеет сложный характер. Максимальный отрицательный заряд углерода (-0,228) находится в незамещенном С5 вфенильном кольце, содержащем карбоксильную группу. Минимальный отрицательный заряд углерода (-0,018) находится в незамещенном С2 втом же фенильном кольце. Углероды С2 и С5 фенильного кольца связаны с водородом. В С3 углерода имеется карбоксильная группа. Она является ориентантом второго рода, который уменьшает электронную плотность фенильной группы. За счет этого двойная связь между С3 иС4 смещается в сторону С3 углерода, а углерод С4 имеет положительный заряд (0,154). Электронная плотность двойной связи углеродов С5 – С6 смещается в сторону С5, заряд С5 равен -0,228, а С6 -0,054. Электронная плотность атома брома находящегося в С6 углерода бензольного кольца, во-первых, смещается в сторону фенильной группы, так как является ориентантом первой группы, повышающим  электронную плотность. Во-вторых, связь Br-C6 является ковалентно полярной, за счет электроноотрицательности атома Br частично смещается в его сторону и имеет наименьший положительной заряд (0,088). За счет смещения электронной плотности π-связи в двойной связи (›С12‹), С1 имеет значительной отрицательной заряд (-0,075), больший чем заряд С2 (-0,018) связанного с атомом водорода. Максимальный положительной заряд атома водорода наблюдается  в гидроксильной группе. Эти полученные теоретически квантово-химические данные подтверждаются сопоставлением их информацией, полученной на практике.

Распределение электронной плотности по атомам в молекуле 2-метил-фенил-азо-4′-гидрокси-6-бромофенил-карбокси-3′ (Рис.1.(в) показывает, что максимальная электронная плотность наблюдается в гидроксильной и карбоксильной группах. На основе этого можно предполагать, что реакции замещения протекают за счет атома водорода этих групп, а реакция присоединения, возможно, протекает за счет карбонильной группы.

Таким образом, метод получения производного 2-метил-фенил-азо-4′-гидрокси-6-бромофенил-карбокси-3′ технически прост, селективен, удобен и эффективен, не требует специальной аппаратуры и проводится при комнатной температуре. Даёт экономический эффект из-за высокого выхода целевого продукта, легкой осуществляемости и стоимости исходных реагентов и растворителей.

Исследования в этой области продолжаются.

Литература:

1.      Бурятский Государственный Университет Курсовая работа по органической химии «Получение синтетических красителей реакцией азосочетания на примере синтеза 3-окси-4-карбоксиазобензола» стр. Улан-Уде, 2003г.

2.      Вязьмин С. Ю., Березина С. Е., Ремизова Л. А., Дамнин И. Н., Гляйтер Р. Синтез новых сопряженных диинов, содержащих карбаматные группы и изучение их свойств. //Ж. орган. химия, 2002, т. 38, № 6, С.817–829.

3.      Степанов Н. Ф. Квантовая механика и квантовая химия.-Москва, 2001. –С. 128–129.

4.      Кнунянс И. Л., Бояринов А. Д. Математическое моделирование. Москва, 2008. том 3. С. 1454–1465.

5.      Нурманов С. Э. Моделирование процесса винилирования пиперидина // Кимёвий технология. Назорат ва бошкарув. Ташкент, 2006. № 5. С. 20–24.

6.      Кобзев Г. И. Применение неэмпирических методов в квантого-химических расчетах. Оренбург: ГОУ ОГУ, 2004. 150с.

Основные термины (генерируются автоматически): органических соединений, органической химии, отрицательный заряд углерода, положительной заряд, заряд С5 равен, заряд атома водорода, электронной плотности, Максимальный отрицательный заряд, Минимальный отрицательный заряд, заряд С2, органического синтеза, наименьший положительной заряд, органических соединений особое, геометрии органических соединений, синтеза новых соединений, геометрию органических соединений, электронную плотность, и проведения синтеза соединений, способности органических соединений, значительной отрицательной заряд.

Обсуждение

Социальные комментарии Cackle
Задать вопрос