Библиографическое описание:

Ибраев Ш. Ш., Айтбаева А. Е., Тажибаева А. С. Эквивалентность обычной и ограниченной второй когомологий простых модулей классических модулярных алгебр Ли // Молодой ученый. — 2014. — №1.2. — С. 1-2.

Пусть  – простая односвязная алгебраическая группа над алгебраически замкнутым полем  характеристики ,  – ядро отображения Фробениуса для  и  – алгебра Ли группы .  В категории ограниченных модулей теория представлений  и теория представлений алгебры Ли   эквивалентны [1; часть I, п. 9.6]. Следовательно, когомология ограниченного модуля для  и соответствующая ограниченная когомология алгебры Ли  также эквивалентны. Ограниченная когомология ограниченной алгебры Ли для ограниченного модуля была введена Хохшильдом в [2]. В этой же работе была построена точная последовательность, устанавливающая связь между ограниченной и обычной когомологиями алгебры Ли, а также изучены свойства начальных членов этой последовательности. В частности, установлено эквивалентность первой обычной и первой ограниченной когомологий ограниченной алгебры Ли. Для второй когомологии это утверждение же неверно. Однако известные примеры классических алгебр Ли малых рангов показывают, что в этих случаях вторые ограниченные и обычные когомологий простых ограниченных нетривиальных модулей совпадают.  В данной работе доказывается, что, если соответствующая первая группа когомологии тривиальна, то последнее утверждение распространяется для всех классических алгебр Ли над алгебраически замкнутым полем положительной характеристики.

Теорема 1. Пусть – классическая алгебра Ли над алгебраически замкнутым полем  характеристики . Предположим, что для алгебры Ли типа  . Если   и , то .

Доказательство. Для всех  справедлива следующая точная последовательность Хохшильда:

        .  (1)

Если  и все условия теоремы 1 выполнены, то ,  и  из точной последовательности (1) получаем следующую короткую точную последовательность -модулей:

                               .

Все нетривиальные случаи когомологии   подробно изучены в работах  [3], [4].

Если  и все условия теоремы 1 выполнены, то очевидно, что  и из точности последовательности (1) следует требуемый изоморфизм теоремы 1. Доказательство теоремы 1 завершено.

Если , то вероятнее всего утверждение теоремы 1 также выполняется, но доказать это пока не удается.  Для когомологии индуцированного модуля  в работах  [5], [6] получена следующая замечательная формула, справедливая для ,     

                     (2)

где  – максимальная нильпотентная подалгебра алгебры Ли группы , соответствующая отрицательным корням,  – симметрическая алгебра на ,  –  длина элемента .  Формальных характеров -модуля  можно вычислить по формуле

                         ,            (3)

где  – размерность -весового подпространства пространства .

Для вычисления , где , можно использовать следующий алгоритм:

1) Вычислить .

2) Если , то по принципу связанности для  .

3) Пусть . Отношение сильной связанности, введенное Андерсеном  в [7], является отношением эквивалентности на множестве  и делит это множество на эквивалентные классы, сильно связанных с друг другом элементов. Число эквивалентных классов равно порядку  фундаментальной группы  системы корней . Согласно [7], элементов каждого эквивалентного класса можно упорядочить по обычному частичному порядку. Так как эквивалентные классы не пересекаются, то  принадлежит только одному из этих классов, т.е. .  Предположим, что он упорядочен по возрастанию и  для некоторого .  Рассматривая длинные точные когомологические последовательности -когомологии, соответствующие  коротким точным последовательностям

                               ,                     

и используя общую формулу Андерсена-Янцена (2), формулу формальных характеров (3), индуктивно по  и по  можно вычислить когомологии . Тогда .

Литература:

1.      J.C. Jantzen. Representations of algebraic groups. – Boston: Pure and Applied Mathematics, Vol. 131. - 1987. - 446 p.

2.      G. Hochschild. Cohomology of restricted Lie algebras // Amer. J. Math. - 1954. - Vol. 76. - P. 555-580.

3.      W.L.J. van der Kallen. Infinitesimally central extensions of Chevalley groups, Berlin, Heidelberg, New York: Springer-Verlag, 1973.

4.      Ш.Ш. Ибраев. О центральных расширениях классических алгебр Ли  // Сиб. электрон. матем. изв. – 2013. – Т. 10. – С. 450-453.

5.      Andersen H.H., Jantzen J.C. Cohomology of induced representations for algebraic  groups // Math. Annal. - 1984. - Vol. 269. - P. 487-525.

6.      Kumar S., Lauritzen N., Thomsen J. Frobenius splitting of cotangent bundles of flag varieties // Invent. Math. - 1999. - Vol. 136. - P.603-621.

7.      Andersen H.H. The strong linkage principle // J. Reine Anew. Math. - 1980. - Vol. 315. - P. 53-59.

Основные термины (генерируются автоматически): алгебры Ли, алгебр Ли, классических алгебр Ли, алгебраически замкнутым полем, ограниченной алгебры Ли, когомологий простых, когомологий простых модулей, замкнутым полем характеристики, простых модулей классических, алгебра Ли, алгебры Ли эквивалентны, когомология алгебры Ли, Ли группы, алгебры Ли типа, модулярных алгебр Ли, когомологий ограниченной алгебры, когомологиями алгебры Ли, алгебр Ли малых, подалгебра алгебры Ли, алгебра Ли группы.

Обсуждение

Социальные комментарии Cackle
Задать вопрос