Программирование линейного асинхронного двигателя с числом пазов в индукторе равном шесть | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 марта, печатный экземпляр отправим 3 апреля.

Опубликовать статью в журнале

Библиографическое описание:

Программирование линейного асинхронного двигателя с числом пазов в индукторе равном шесть / А. А. Емельянов, А. В. Медведев, А. В. Кобзев [и др.]. — Текст : непосредственный // Молодой ученый. — 2013. — № 10 (57). — С. 23-38. — URL: https://moluch.ru/archive/57/7956/ (дата обращения: 19.03.2024).

В данной работе объектом рассмотрения является линейный асинхронный двигатель с числом пазов индуктора равным шести (Z1 = 6), математическая модель которого реализована в MATLAB [5].

На рис. 1,а приведен линейный асинхронный двигатель с одной парой полюсов (2р = 2) и с одним числом на полюс и фазу (q = 1). На рис. 1,б дана его магнитная схема замещения. Расчетная модель представляет собой совокупность развернутых схем замещения магнитной и электрических цепей с частично постоянной аппроксимацией параметров в пределах зубцового деления, которое принимается за основу при разбиении магнитной цепи на участке [1].

При рассмотрении линейного асинхронного двигателя приняты следующие основные допущения:

-          магнитная проницаемость стальных участков магнитопроводов индуктора и подвижной части (зубцов, ярма) принимается равной бесконечности (µ = ∞). В магнитной схеме замещения (рис. 2) учитывается только магнитные сопротивления воздушных участков в зоне индуктора и в шунтирующих зонах;

-          в шунтирующих зонах как под сбегающим, так и набегающим краем индуктора (статора) учитывается по четыре зубцовых деления подвижного элемента (ротора).

Представление линейного асинхронного двигателя в виде магнитных схем замещения приводит к необходимости работать с матрицами, что представляет большую ценность для подготовки студентов младших курсов к исследовательской работе. Данная работа адресована студентам, поэтому из методических целей представлена без сокращений.


Рис. 1. а) Линейный асинхронный двигатель (2р = 2, Z1 = 6); б) Магнитная схема замещения


Запишем основные уравнения для «n»-ого участка схемы замещения.

Баланс магнитных напряжений магнитной цепи

 – контурные магнитные потоки;

 – магнитные сопротивления воздушных участков;

 – магнитодвижущая сила, созданная статорным током , протекающим по всем проводникам паза ();

 – М.Д.С. тока ротора в стержне ();

– в шунтирующих зонах.

Баланс М.Д.С. для «n»-го участка имеет следующий вид:

.

Отсюда ток в стержне ротора определится по следующему выражению:

.

(1)

Уравнение баланса напряжений электрической цепи ротора

(2)

Выразим производные во времени через конечные разности:

,

где      n – номер зубцового деления;

k – номер шага разбиения по времени.

В формуле (2) скорость подвижного элемента принимаем равным  и в пределах «k» интервала считается постоянным.

Производные по пространственной координате «х» выразим через центральные конечные разности:

.

С учетом вышеприведенных замечаний уравнение (2) примет следующий вид:

(3)

Исключим из уравнения (3) токи в роторе. Для этого подставим выражение (1) в уравнение (3) и получим:

(4)

Это уравнение может быть реализовано при произведении матрицы А, элементы которой записаны в квадратных скобках, на матрицу-столбец X, состоящей из потоков (Ф) и токов статорной обмотки. Правая часть уравнения (4) формирует первые четырнадцать элементов матрицы-столбца свободных членовS в (k-1) момент времени. Элементы 15 и 16 строк матрицы А и соответствующие элементы s15 и s16 будут сформированы из баланса напряжений статорной обмотки.

Наконец, последние элементы матриц А и S определятся из баланса токов в трехфазной обмотке соединенной в звезду без нулевого провода. Матрица-столбец Х сформирована из первых четырнадцати элементов, соответствующих потокам Ф1, … , Ф14, а остальные – токам статорной обмотки iАs, iСs и iВs.

Общий вид матриц при числе полюсов 2р = 2 и общем числе пазов индуктора (статора) Z1 = 6 приведен на рис.3.

Введем следующие обозначения:

-          Магнитные сопротивления в шунтирующих зонах:

R1 = R2 = R14 = R15 = 500∙Rδ;

R3 = R13 = 50∙Rδ;

R4 = R12 = 5∙Rδ.

-          Магнитные сопротивления в индукторной зоне:

R5 = R6 = … = R11 = Rδ.

-                   Элементы матрицы А, перемножаемые на потоки матрицы-столбца Х:


Матрица А

Х

S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

a1,1

a1,2

a1,3

×

x1 = Ф1

=

s1

2

a2,1

a2,2

a2,3

a2,4

x2 = Ф2

s2

3

a3,1

a3,2

a3,3

a3,4

a3,5

x3 = Ф3

s3

4

a4,2

a4,3

a4,4

a4,5

a4,6

a4,15

x4 = Ф4

s4

5

a5,3

a5,4

a5,5

a5,6

a5,7

a5,15

a5,16

x5 = Ф5

s5

6

a6,4

a6,5

a6,6

a6,7

a6,8

a6,15

a6,16

a6,17

x6 = Ф6

s6

7

a7,5

a7,6

a7,7

a7,8

a7,9

a7,15

a7,16

a7,17

x7 = Ф7

s7

8

a8,6

a8,7

a8,8

a8,9

a8,10

a8,15

a8,16

a8,17

x8 = Ф8

s8

9

a9,7

a9,8

a9,9

a9,10

a9,11

a9,15

a9,16

a9,17

x9 = Ф9

s9

10

a10,8

a10,9

a10,10

a10,11

a10,12

a10,16

a10,17

x10 = Ф10

s10

11

a11,9

a11,10

a11,11

a11,12

a11,13

a11,17

x11 = Ф11

s11

12

a12,10

a12,11

a12,12

a12,13

a12,14

x12 = Ф12

s12

13

a13,11

a13,12

a13,13

a13,14

x13 = Ф13

s13

14

a14,12

a14,13

a14,14

x14 = Ф14

s14

15

a15,5

a15,7

a15,8

a15,10

a15,15

a15,17

x15 = iАS

s15

16

a16,6

a16,7

a16,9

a16,10

a16,16

a16,17

x16 = iСS

s16

17

a17,15

a17,16

a17,17

x17 = iВS

s17

Рис. 3. Общий вид матриц A, X и S.


  

-                   Элементы матрицы А, перемножаемые на токи i1, … , i6 матрицы Х:

-                   Элементы матрицы-столбца свободных членов S:

Уравнение (4) позволит определить для первых четырнадцати строк элементы матрицы А и с первый по четырнадцатый элементы матрицы-столбца S, для этого последовательно зададимся n:

n = 1.

Запишем элементы матрицы А:

; ; .

В правой части сформирован элемент  матрицы-столбца S:

Примечание: вначале матрица А предстанет «пустой» и после каждой операции n = … определятся постепенно элементы для каждой строки и только в конце всех операций матрица А предстанет перед читателем в том виде как она дана на рис. 3. Но эта «пустая» матрица А уже должна быть подготовлена. Эта «пустая» форма направляет, выступает «организующим началом» по поиску элементов в каждой строке.

При n = 1, как было показано выше, определились элементы первой строки. Найденные коэффициенты вписываем в матрицу А. В дальнейшем становится понятным алгоритм заполнения матрицы.

n = 2.

; ; ; .

n = 3.

; ; ; ;

n = 4.

; ; ; ; ;

.

Примечание: при подстановке в уравнение (4) n = 5, мы увидим в соответствии с рис. 1, что войдет ток iСS с отрицательным знаком, в то же время в матрице-столбце Хнет знака «–» , поэтому его необходимо учесть в соответствующем элементе матрицы А.

Аналогично для других фаз, в концах обмоток x, y, z условно принимаем знак «–» и этот знак вводим в соответствующие элементы матрицы А.

n = 5.

; ; ; ; ; ;

n = 6.

; ; ; ; ; ;

;

n = 7.

; ; ; ; ; ;

;

n = 8.

; ; ; ; ; ;

;

n = 9.

; ; ; ; ; ;

;

n = 10.

; ; ; ; ; ; .

n = 11.

; ; ; ; ; .

n = 12.

; ; ; ; .

n = 13.

; ; ; .

n = 14.

; ;

Элементы строк 15 и 16 матрицы А и соответствующие элементы матрицы-столбца S определяются из баланса электрических напряжений обмоток статора [2].

(5)

где     

С учетом шага по времени t в k-ый момент времени:

Уравнения (5) при выражении производных по времени через конечные разности примут следующий вид:

n = 15.

n = 16.

Наконец, сумма токов определяет элементы семнадцатой строки матрицы А и элемент s17 матрицы-столбца S.

Окончательно, матрица А примет следующий вид, удобный для программирования в MATLAB:




1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

B4

C5

D2

2

E4

B5

C6

D1

3

-D3

E5

B6

C7

D

4

-D2

E6

B7

C

D

T

5

-D1

E7

B

C

D

Y

-T

6

-D

E

B

C

D

-T

-Y

T

7

-D

E

B

C

D

-T

T

Y

8

-D

E

B

C

D

-Y

T

-T

9

-D

E

B

C

D

T

Y

-T

10

-D

E

B

C1

D1

-T

-Y

11

-D

E

B1

C2

D2

T

12

-D

E1

B2

C3

D3

13

-D1

E2

B3

C4

14

-D2

E3

B4

15

U

-U

-U

U

KS

-KS

16

U

U

-U

-U

-KS

KS

17

1

1

1

Неизвестные переменные (потоки и токи в статорной обмотке) в k-й момент времени определяются в результате следующей операции с матрицами:

X=A-1·S,

Далее, подставляя в уравнение (1) n = 1…14, определяем токи в роторе:

Электромагнитные усилия на зубцовом делении определяются по следующим формулам:

                                   

                             

                       

      

Суммарное усилие: .

Скорость в k-й момент времени:

Математическая модель линейного асинхронного двигателя реализована в программном пакете MATLAB методом Гаусса-Жордана. Ниже приведен пример расчета.

 

   

  

 

Временные зависимости скорости и электромагнитного усилия линейного асинхронного двигателя в режиме прямого пуска, полученные на математической модели, представлены на рис.4.

Рис.4. Результат моделирования линейного асинхронного двигателя

в режиме прямого пуска

Литература:

1.         Сарапулов Ф.Н., Емельянов А.А., Иваницкий С.В., Резин М.Г. Исследование электромеханических переходных процессов линейного асинхронного короткозамкнутого двигателя // Электричество. – 1982. – №10. – С. 54–57.

2.         Емельянов А.А., Богатов Е.А., Клишин А.В., Медведев А.В., Симонович В.Г. Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения // Молодой ученый. – 2010. – №5. – С.14–22.

3.         Емельянов А.А., Медведев А.В., Богатов Е.А., Кобзев А.В., Бочкарев Ю.П. Программирование линейного асинхронного двигателя в MATLAB // Молодой ученый. – 2013. – №3. – С. 129-143.

4.         Емельянов А. А., Медведев А. В., Кобзев А.В., Евдокимов О.В., Габзалилов Э.Ф., Авдеев А.С. Моделирование асинхронного двигателя с укладкой обмотки статора (Z1 = 6) через спинку ярма // Молодой ученый. – 2013. – №6. – С. 1-11.

5.         Ануфриев И.Е. и др. MATLAB 7 / Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н.. – СПб.: БХВ-Петербург, 2005. – 1104 с.

Основные термины (генерируются автоматически): линейный асинхронный двигатель, MATLAB, матрица А, Магнитная схема замещения, момент времени, статорная обмотка, элемент матрицы А, математическая модель, ток, уравнение.


Похожие статьи

Моделирование линейного асинхронного двигателя с укладкой...

элемент матрицы А, матрица А, Линейный асинхронный двигатель, магнитная схема замещения, момент времени, статорная обмотка, математическая модель, асинхронный двигатель, общий вид матриц, MATLAB.

Моделирование линейного асинхронного двигателя с укладкой...

MATLAB, линейный асинхронный двигатель, элемент матрицы А, матрица А, статорная обмотка, математическая модель, момент времени, Магнитная схема замещения, общий вид матриц, прямой пуск.

Моделирование линейного асинхронного двигателя с укладкой...

элемент матрицы А, линейный асинхронный двигатель, магнитная схема замещения, статорная обмотка, MATLAB, матрица А, математическая модель, электромагнитное усилие, момент времени...

Программирование линейного асинхронного двигателя (Z1 = 18)...

MATLAB, статорная обмотка, нулевой провод, момент времени, матрица А, элемент матрицы А, линейный асинхронный двигатель, Ток, уравнение, электромагнитное усилие, элемент.

Моделирование синхронного явнополюсного линейного...

элемент матрицы А, статорная обмотка, момент времени, линейный двигатель, MATLAB, матрица А, роторная обмотка, ток, уравнение, элемент.

Моделирование асинхронного двигателя с укладкой обмотки...

элемент матрицы А, статорная обмотка, асинхронный двигатель, матрица А, момент времени, Магнитная схема замещения, вид, ток, уравнение, общий вид матриц.

Математическая модель САР скорости линейного...

% Формирование матрицы А.

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Математическая модель линейного асинхронного двигателя...

Линейный асинхронный двигатель приведен на рис.2. Расчетная модель представляет собой совокупность развернутых схем замещения магнитной и электрических цепей с частично постоянной аппроксимацией параметров в пределах зубцового деления...

Программирование линейного асинхронного двигателя...

нулевой провод, статорная обмотка, матрица А, элемент матрицы А, момент времени, MATLAB, линейный асинхронный двигатель, Ток, уравнение, элемент.

Похожие статьи

Моделирование линейного асинхронного двигателя с укладкой...

элемент матрицы А, матрица А, Линейный асинхронный двигатель, магнитная схема замещения, момент времени, статорная обмотка, математическая модель, асинхронный двигатель, общий вид матриц, MATLAB.

Моделирование линейного асинхронного двигателя с укладкой...

MATLAB, линейный асинхронный двигатель, элемент матрицы А, матрица А, статорная обмотка, математическая модель, момент времени, Магнитная схема замещения, общий вид матриц, прямой пуск.

Моделирование линейного асинхронного двигателя с укладкой...

элемент матрицы А, линейный асинхронный двигатель, магнитная схема замещения, статорная обмотка, MATLAB, матрица А, математическая модель, электромагнитное усилие, момент времени...

Программирование линейного асинхронного двигателя (Z1 = 18)...

MATLAB, статорная обмотка, нулевой провод, момент времени, матрица А, элемент матрицы А, линейный асинхронный двигатель, Ток, уравнение, электромагнитное усилие, элемент.

Моделирование синхронного явнополюсного линейного...

элемент матрицы А, статорная обмотка, момент времени, линейный двигатель, MATLAB, матрица А, роторная обмотка, ток, уравнение, элемент.

Моделирование асинхронного двигателя с укладкой обмотки...

элемент матрицы А, статорная обмотка, асинхронный двигатель, матрица А, момент времени, Магнитная схема замещения, вид, ток, уравнение, общий вид матриц.

Математическая модель САР скорости линейного...

% Формирование матрицы А.

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Математическая модель линейного асинхронного двигателя...

Линейный асинхронный двигатель приведен на рис.2. Расчетная модель представляет собой совокупность развернутых схем замещения магнитной и электрических цепей с частично постоянной аппроксимацией параметров в пределах зубцового деления...

Программирование линейного асинхронного двигателя...

нулевой провод, статорная обмотка, матрица А, элемент матрицы А, момент времени, MATLAB, линейный асинхронный двигатель, Ток, уравнение, элемент.

Задать вопрос