Напорное течение жидкости в поле центробежных сил | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №6 (53) июнь 2013 г.

Статья просмотрена: 152 раза

Библиографическое описание:

Денисов В. А. Напорное течение жидкости в поле центробежных сил // Молодой ученый. — 2013. — №6. — С. 47-49. — URL https://moluch.ru/archive/53/7034/ (дата обращения: 21.07.2018).

При выборе напорного устройства системы охлаждения крупных электрических машин с внутренней полостью, заполненной жидким диэлектриком, [1] приходится учитывать то обстоятельство, что в так называемом «воздушном зазоре» машины (кольцевом канале) и в осевых каналах ротора (каналы круглого сечения, вращающиеся вокруг параллельной им внешней оси) течение жидкости происходит в дополнительном поле центробежных сил.

Для теоретического изучения влияния центробежных сил на движение жидкости в указанных выше каналах необходимо, чтобы они вошли в соответствующие уравнения, то есть, чтобы эти силы были внешними. Это, как известно, может быть достигнуто в том случае, если анализировать относительное движение.

Общее уравнение относительного напорного установившегося движения жидкости, составленное из основных размерных переменных параметров, характеризующих упомянутое движение, можно представить в виде:

для кольцевого канала

F1 (r1, d, D, qZ, qf, Dр, ац, g, r, n) = 0;                                                                       (1)

для осевого канала

                                                                                (2)

Введенные в уравнение (1) и (2) параметры относятся к трем категориям:

1)        характерные линейные размеры, определяющие границы области (радиус  внутренней цилиндрической поверхности и высота  кольцевого канала, внутренний диаметр осевого канала, шероховатость стенок каналов D);

2)        кинематические и динамические характеристики движения (осевая qz и вращательная  компоненты средней относительной скорости в кольцевом канале, средняя относительная скорость  в осевом канале, перепад давления Dр в каналах, среднее центробежное ускорение , действующее на частицы жидкости в кольцевом канале, равное , где rс — средний радиус вращения, равный rс = 0,5d; среднее центробежное ускорение действующее на частицы жидкости в осевом канале, равное  где  -линейная скорость канала на радиусе  вращения его оси; ускорение свободного падения g);

3)        физические свойства жидкости (плотность r, кинематический коэффициент вязкости n).

Зависимостям (1) и (2) можно придать более определенный вид, сгруппировав все переменные размерные величины в безразмерные комплексы с использованием - теоремы. В данном случае упомянутыми безразмерными комплексами являются:

для кольцевого канала

1) число Эйлера 5) число Фруда

;

2) «осевое» число Рейнольдса 6) относительная шероховатость

;

3) «окружное» число Рейнольдса 7) симплекс

; .

4) число Тейлора

для осевого канала

1)     число Эйлера 4) параметр ориентации

 

2) число Рейнольдса 5) число Фруда

 

3)     параметр вращения 6) относительная шероховатость

 .

*) Терминология, принятая, согласно [2].

Средняя линейная скорость вращения  жидкости в кольцевом канале может быть представлена в виде:

                                                                                                                   (3)

где - средняя угловая скорость вращения жидкости.

В узких кольцевых каналах  Учитывая сказанное и опуская индекс «с» при угловой скорости  в формуле (2), выражение для окружного числа Рейнольдса  и для числа Тейлора Та принимают вид:

 ,                                                                                     (4)

где  — угловая скорость на радиусе

Если геометрические размеры канала известны и заданы скорости ,   ,то числа  Та,   являются критериями, входящими в нижеследующие критериальные уравнения:

для кольцевого канала

                                                                                 (5)

или

                                                                                      (6)

для осевого канала

.                                                                                    (7)

Естественно, что отыскание функциональной зависимости числа Эйлера от столь большого числа одновременно действующих переменных величин, представляет собой трудную задачу. Очевидно, что эти переменные в зависимости от условий движения жидкости могут в различной степени влиять на

Задача может быть значительно облегчена в том случае, если представится возможность изучать движение жидкости в таких условиях, которые позволят исключить из рассмотрения некоторые переменные в зависимостях (5 ¸ 7). Иными словами, если представится возможность ограничить число переменных теми из них, которые главным образом характеризуют поток в данных условиях и влияют на потери напора.

В рассматриваемых здесь крупных электрических машинах с жидкостным охлаждением даже при сравнительно небольших частотах вращения ротора (300–500 ) величина центробежного ускорения составляет порядка 100g, благодаря чему влиянием ускорения силы тяжести g на поток можно пренебречь и число Фруда из уравнений (5 ¸ 7) исключить. Кроме того, течение жидкости в рассматриваемых каналах будет происходить при значениях чисел Рейнольдса, соответствующих ламинарному и начальной стадии турбулентного режимов движения, при которых, как известно, влиянием относительной шероховатости на потери напора можно пренебречь.

С учетом сказанного, зависимости (5 ¸ 7) примут вид:

для кольцевого канала

                                                                                               (8)

или

                                                                                                  (9)

для осевого канала

                                                                                                  (10)

Свяжем перепад давления в каналах со средней скоростью  и течения жидкости в них следующими зависимостями:

для кольцевого канала

                                                                                                          (11)

для осевого канала

                                                                                                            (12)

где l — длина канала; - так называемый гидравлический диаметр; - диаметр канала; - некоторый коэффициент пропорциональности.

Подставляя (11) и (12) в полученные выше выражения для чисел Эйлера найдем, что в подобных каналах в роли числа Эйлера будет выступать коэффициент

Имея это в виду, уравнения (8 ¸10) перепишем в виде:

для кольцевого канала

                                                                                                 (13)

или

                                                                                                    (14)

для осевого канала

                                                                                                (15)

Таковы критериальные уравнения относительного плавно изменяющегося напорного движения жидкости в кольцевом и осевом каналах.

Из рассмотрения этих уравнений видно, что , также как и коэффициент гидравлического трения (учитывающий потери напора по длине в канале с неподвижными стенками), зависит от скорости осевого движения жидкости в канале и геометрических характеристик канала и кроме того, дополнительно, от скорости вращательного движения.

Вместе с тем, выполненный нами анализ уравнений (13) и (14) показал, что существует область автомодельности  относительно скорости вращательного движения (относительно числа Тейлора), причем в этом случае величину  можно вычислять по известной формуле:

                                                                                                                   (16)

Выводы

В системах охлаждения крупных погружных электродвигателей, заполненных жидким диэлектриком в целях интенсификации процесса теплообмена, необходимо обеспечить непрерывную циркуляцию жидкого диэлектрика внутри машины напорным устройством.

При определении напорно-расходной характеристики напорного устройства необходимо учитывать, что в кольцевом канале («воздушном зазоре») машины и в осевых каналах ротора течение жидкости происходит в дополнительном поле центробежных сил.

Определены этапы теоретического изучения влияния центробежных сил на движение жидкости в указанных выше каналах.

Получены и проанализированы критериальные уравнения относительного плавно изменяющегося напорного движения жидкости в кольцевом и осевом каналах.

Показано, что область ламинарного с отсутствием вихрей Тейлора течения жидкости в кольцевом канале, является областью автомодельности коэффициента  относительно скорости вращательного движения.

Литература:

1.         Денисов В. А., Полубояринов Ю. Г. Применение встроенных насосов в системах охлаждения жидкостно-заполненных герметичных электродвигателей. Межвузовский сборник: СЗПИ, № 37, 2007.

2.         Квитковский Ю. В. Гидромеханическое подобие и кинематическая структура аксиальных потоков жидкости // Тр.МИИТ, 1976, вып. 525, с.4–11.

Основные термины (генерируются автоматически): кольцевой канал, осевой канал, течение жидкости, число, жидкий диэлектрик, относительная шероховатость, вращательное движение, движение жидкости, потеря напора, канал.


Похожие статьи

О точном решении задачи движения вязкой сжимаемой жидкости...

Найдено точное решение одной модели движения жидкости в канале прямоугольной формы. Это решение может быть использовано для проверки работоспособности численных алгоритмов. Постановка задачи о стационарном течении вязкой сжимаемой жидкости в канале...

Интенсификация теплообмена в каналах | Статья в журнале...

Кроме того, жидкость из пограничного слоя проникает в ядро потока. Эти движения приводят к возникновению четырех вихревых областей (рис. 3), которые способствуют

Интенсификация теплообмена в каналах с кольцевыми турбулизаторами при переходном режиме.

Расчет стабилизированного изотермического течения жидкости...

Выполним расчет течения жидкости в круглой цилиндрической трубе. Согласно f˗модели: (3). (4). В уравнении движения (3) и уравнении (4) переноса безразмерной функции величины

Для стабилизированного течения вектор скорости имеет лишь одну компоненту — осевую...

Исследование гидравлического сопротивления внутри труб...

Новизна данной работы заключается в экспериментальном исследовании процесса гидродинамики в потоке жидкости в каналах с локальными

относительная шероховатость трубок, =0,1 мм. Методика обработки экспериментальных данных.

Математическое описание движения частиц твёрдого тела и газа...

Анализ процесса обтекания одиночной частицы потоком вязкой жидкости внутри трубы

Если число частиц в элементарном объеме σ равно n, общая подъемная сила равна nG.

между фазами; силу, возникающую из-за ускоренного движения включений относительно несущей...

Управление движением вращающегося тела с полостью...

Рассматривается в линейной постановке задача Коши для возмущённого относительно равномерного вращения движения динамически симметричного твёрдого тела с полостью, содержащей идеальную жидкость со свободной поверхностью.

Формирование водяных струй в гидравлических резаках на...

Поток жидкости, движущийся по каналу струеформирующего устройства, а в дальнейшем в воздушной среде, можно рассматривать как систему, состоящую из взаимно влияющих друг на друга элементов: вмещающей среды, пограничного слоя и основного течения.

Методы измерения скорости потока в скважинной геофизике

Для измерения расхода жидкости, газа и пара, протекающих по трубопроводам, широкое применение получили расходомеры с сужающим

Чем выше дебит, тем быстрее вращается турбинка и тем больше импульсов в единицу времени поступит в измерительный канал.

Современное состояние исследований по интенсификации...

Тангенциальный подвод жидкости в трубу осуществляется через одно или несколько отверстий.

Число подводящих каналов изменяется от одного до четырех, при их увеличении степень азимутальной неравномерности скорости за завихрителем уменьшается.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

О точном решении задачи движения вязкой сжимаемой жидкости...

Найдено точное решение одной модели движения жидкости в канале прямоугольной формы. Это решение может быть использовано для проверки работоспособности численных алгоритмов. Постановка задачи о стационарном течении вязкой сжимаемой жидкости в канале...

Интенсификация теплообмена в каналах | Статья в журнале...

Кроме того, жидкость из пограничного слоя проникает в ядро потока. Эти движения приводят к возникновению четырех вихревых областей (рис. 3), которые способствуют

Интенсификация теплообмена в каналах с кольцевыми турбулизаторами при переходном режиме.

Расчет стабилизированного изотермического течения жидкости...

Выполним расчет течения жидкости в круглой цилиндрической трубе. Согласно f˗модели: (3). (4). В уравнении движения (3) и уравнении (4) переноса безразмерной функции величины

Для стабилизированного течения вектор скорости имеет лишь одну компоненту — осевую...

Исследование гидравлического сопротивления внутри труб...

Новизна данной работы заключается в экспериментальном исследовании процесса гидродинамики в потоке жидкости в каналах с локальными

относительная шероховатость трубок, =0,1 мм. Методика обработки экспериментальных данных.

Математическое описание движения частиц твёрдого тела и газа...

Анализ процесса обтекания одиночной частицы потоком вязкой жидкости внутри трубы

Если число частиц в элементарном объеме σ равно n, общая подъемная сила равна nG.

между фазами; силу, возникающую из-за ускоренного движения включений относительно несущей...

Управление движением вращающегося тела с полостью...

Рассматривается в линейной постановке задача Коши для возмущённого относительно равномерного вращения движения динамически симметричного твёрдого тела с полостью, содержащей идеальную жидкость со свободной поверхностью.

Формирование водяных струй в гидравлических резаках на...

Поток жидкости, движущийся по каналу струеформирующего устройства, а в дальнейшем в воздушной среде, можно рассматривать как систему, состоящую из взаимно влияющих друг на друга элементов: вмещающей среды, пограничного слоя и основного течения.

Методы измерения скорости потока в скважинной геофизике

Для измерения расхода жидкости, газа и пара, протекающих по трубопроводам, широкое применение получили расходомеры с сужающим

Чем выше дебит, тем быстрее вращается турбинка и тем больше импульсов в единицу времени поступит в измерительный канал.

Современное состояние исследований по интенсификации...

Тангенциальный подвод жидкости в трубу осуществляется через одно или несколько отверстий.

Число подводящих каналов изменяется от одного до четырех, при их увеличении степень азимутальной неравномерности скорости за завихрителем уменьшается.

Задать вопрос