Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Разработка систем рекомендаций на основе Big Data

Научный руководитель
Информационные технологии
14.06.2024
45
Поделиться
Библиографическое описание
Кулинча, П. В. Разработка систем рекомендаций на основе Big Data / П. В. Кулинча. — Текст : непосредственный // Молодой ученый. — 2024. — № 24 (523). — С. 91-93. — URL: https://moluch.ru/archive/523/115563/.


В данной статье рассмотрены основные подходы к разработке систем рекомендаций на основе Big Data, включая коллаборативную фильтрацию, контентную фильтрацию и гибридные методы, а также представлены примеры реализации алгоритмов на языке программирования Python.

Ключевые слова: системы рекомендаций, большие данные, алгоритмы рекомендаций, рекламные алгоритмы, прогнозирование.

This article examines the main approaches to developing recommendation systems based on Big Data, including collaborative filtering, content-based filtering, and hybrid methods. It also presents examples of algorithm implementations in the Python programming language.

Keywords: recommendation systems, big data, recommendation algorithms, advertising algorithms, forecasting.

Введение

В эпоху цифровизации и увеличения объемов данных, создание эффективных систем рекомендаций становится ключевым аспектом для улучшения пользовательского опыта в различных сферах, включая электронную коммерцию, потоковое вещание и социальные сети. Системы рекомендаций используют алгоритмы машинного обучения для анализа поведения пользователей, их предпочтений и взаимодействий с продуктами или услугами, чтобы предложить наиболее релевантный и персонализированный контент.

Коллаборативная фильтрация

Коллаборативная фильтрация — это метод, основанный на анализе и сравнении предпочтений пользователя с предпочтениями других пользователей для выявления схожих вкусов. Этот метод можно реализовать с использованием двух основных подходов: основанного на пользователях (user-based) и основанного на объектах (item-based) [1].

Пример реализации user-based коллаборативной фильтрации на Python представлен на рисунке 1.

Пример реализации user-based коллаборативной фильтрации

Рис. 1. Пример реализации user-based коллаборативной фильтрации

В данном примере используется матрица рейтингов пользователей для вычисления косинусного сходства между ними. Функция recommend_products генерирует рекомендации на основе анализа предпочтений похожих пользователей.

Контентная фильтрация

Контентная фильтрация фокусируется на атрибутах объектов, используя описание продукта и профиль предпочтений пользователя для выявления наилучшего соответствия. Этот подход позволяет рекомендовать объекты, даже если между пользователями нет существенной взаимосвязи, основываясь на их уникальных предпочтениях в содержании [1].

Пример реализации контентной фильтрации на Python представлен на рисунке 2.

Пример реализации контентной фильтрации на Python

Рис. 2. Пример реализации контентной фильтрации на Python

В данном фрагменте кода используется TF-IDF векторизация для преобразования текстовых описаний товаров в числовые векторы. Затем, на основе косинусного сходства между этими векторами, функция recommend выдает индексы товаров, наиболее похожих на заданный товар.

Гибридные методы

Гибридные системы рекомендаций комбинируют подходы коллаборативной и контентной фильтрации для улучшения качества рекомендаций и преодоления их ограничений. Преимуществом гибридных систем является их способность использовать разнообразные источники данных для более точного предсказания предпочтений пользователей [2].

Пример простого гибридного подхода представлен на рисунке 3.

Пример простого гибридного подхода

Рис. 3. Пример простого гибридного подхода

В данном примере гибридной системы рекомендаций комбинируются результаты из контентной фильтрации и коллаборативной фильтрации, чтобы предоставить пользователю наиболее релевантные и персонализированные рекомендации.

Литература:

  1. Data Mining. Извлечение информации из Facebook[*], Twitter, LinkedIn, Instagram, GitHub. — СПб.: Питер, 2020. — 464 с.: ил.
  2. Data Science. Наука о данных с нуля: Пер. с англ. — 2-е изд., перераб. и доп. — СПб.: БХВ-Петербурr, 2021. — 416 с.: ил.

[*]Instagram и Facebook, продукты компании Meta, которая признана экстремистской организацией в Росси

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
системы рекомендаций
большие данные
алгоритмы рекомендаций
рекламные алгоритмы
прогнозирование
Молодой учёный №24 (523) июнь 2024 г.
Скачать часть журнала с этой статьей(стр. 91-93):
Часть 2 (стр. 81-151)
Расположение в файле:
стр. 81стр. 91-93стр. 151

Молодой учёный