Исследование технологии многокадрового сверхразрешения по зашумлённым изображениям | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №20 (519) май 2024 г.

Дата публикации: 18.05.2024

Статья просмотрена: 30 раз

Библиографическое описание:

Андреев, А. Ю. Исследование технологии многокадрового сверхразрешения по зашумлённым изображениям / А. Ю. Андреев. — Текст : непосредственный // Молодой ученый. — 2024. — № 20 (519). — С. 1-3. — URL: https://moluch.ru/archive/519/114343/ (дата обращения: 16.01.2025).



В статье автор исследует методы построения многокадрового сверхразрешения по набору зашумленных изображений.

Ключевые слова: нейронные сети, построение сверхразрешения, зашумленные изображения, медианная фильтрация, dropout.

В данной работе будет рассматриваться влияние методов устранения шумов при построении сверхизображения.

В качестве нейронных сетей были выбраны TR-MISR [1], Deep Burst [2] и RAMS [3]. Каждая из нейронных сетей уникальна и имеет свои сильные стороны при построении сверхизображений.

Механизмы Self-Attention и Transformer, которые используются в сети TR-MISR позволяют сети «не забывать», что было на предыдущих шагах и самостоятельно выбирать более важную информацию, а также позволяет распараллелить многие вычисления. Эта модель первоначально была обучена на снимках дистанционного зондирования Земли.

Сеть Deep Burst имеет специальный блок выравнивания каждого входного изображения относительно базового для устранения артефактов поворота и деформации. А также сочетает в блоке слияния нейронную сеть для предсказания веса каждого входного изображения для различных артефактов на отдельных изображениях. Сеть обучения на серийной съемке со смартфона.

Сеть RAMS одновременно использует пространственные и временные корреляции для объединения нескольких изображений. Также в этой модели представлен механизм распознавания визуальных признаков с помощью 3D-сверток, чтобы обеспечить объединение данных и извлечение информации из множества изображений. Эта сеть, аналогично TR-MISR первоначально была обучена на снимках дистанционного зондирования Земли.

В качестве наборов данных для обучения и тестирования были выбраны PROBA-V Super-Resolution и Zurich RAW to RGB dataset.

Набор данных PROBA-V Super-Resolution состоит из изображений в красном и ближнем спектральных диапазонов, сделанных в 74 регионов планеты. Изображения сделаны на разной высоте и имеют различное разрешение и представлены в градациях серого.

Набор данных Zurich RAW имеет более 48 тысяч изображения. HR-изображения сделаны на камеру Canon 5D, а LR изображения на смартфон Huawei P20. Все HR изображения предварительно выровнены относительно LR изображения. Изображения имеют размер 224 на 224 пикселя и представлены к RGB формате.

В качестве метрик используются PSNR и SSIM. PSNR показывает на сколько полученное изображение похоже на оригинальное, а SSIM позволяет учесть «восприятие ошибки» благодаря учёту структурного изменения информации.

Для начала все вышеупомянутые модели были обучены на обоих наборах данных. Результаты обучения представлены в таблице 1.

Таблица 1

Результаты обученных моделей на обоих наборах данных на не зашумлённых изображениях

Модель

PSNR

(PROVA-V)

SSIM

(PROVA-V)

PSNR

(Zurich RAW)

SSIM

(Zurich RAW)

Deep Burst

43,48

0,9524

47,52

0,9831

RAMS

51,44

0,9917

44,26

0,9569

TR-MISR

50,28

0,9856

46,83

0,9783

В качестве шума были выбраны аддитивный (Гауссовский шум) и шум соли и перца. На рис. 1 представлен аддитивный с дисперсией равной 0,025, а на рис.2 представлен шум соли и перца с долей шума равной 0,1.

Аддитивный шум с дисперсией равной 0,025

Рис. 1. Аддитивный шум с дисперсией равной 0,025

Аддитивный шум с долей шумов 0,1

Рис. 2. Аддитивный шум с долей шумов 0,1

Аддитивный или Гауссовский шум на изображении возникает при съемке из-за освещенности или дефектов сенсора.

Шум соли и перца возникает из-за изменения количества фотонов, регистрируемых при заданном уровне экспозиции или выгоревших пикселях на сенсоре.

Оба шума могут также возникать при передаче изображений вследствие помех.

Для устранения шума в работе используются следующие алгоритмы: медианная фильтрация, функция Хьюбера для классической модели и дополнительные Dropout слои для нейронных сетей.

Медианная фильтрация за счет прохождения рамкой по всему изображению должна устранить шум соли перца, но для этого нужно подобрать подходящий размер окна, чтобы с одной стороны убирались артефакты, а с другой не терялись границы у объектов.

Dropout слой позволяет модели в процессе обучения исключать некоторые нейроны, что во первых позволит избежать переобучения, а во вторых избавиться от ненужных признаков, например, случайных артефактов на отдельных изображениях.

В таблице 2 представлены результаты тестирования моделей на зашумленных изображениях.

Таблица 2

Результаты тестирования моделей на зашумленных данных

Модель

Шум

Параметр

PSNR

(PROVA-V)

SSIM

(PROVA-V)

PSNR

(Zurich)

SSIM

( Zurich )

Deep Burst

Гаусса

0,025

12,12

0,2508

14,46

0,2739

Deep Burst

Соль перец

0,1

19,39

0,4564

18,22

0,4264

RAMS

Гаусса

0,025

12,28

0,4172

11,65

0,4312

RAMS

Соль перец

0,1

13,46

0,3716

12,13

0,3556

TR-MISR

Гаусса

0,025

20,95

0,5172

23,67

0,5373

TR-MISR

Соль перец

0,1

22,17

0,5316

24,34

0,5574

После добавления предобработки в виде медианной фильтрации и dropout слоев получились результаты, представленные в таблице 3.

Таблица 3

Результаты тестирования моделей на зашумленных данных с использованием методов устранения шума

Модель

Шум

Метод устранения шума

PSNR

(PROVA-V)

SSIM

(PROVA-V)

PSNR

(Zurich)

SSIM

(Zurich)

Deep Burst

Гаусса

0,025

27.80

0.6342

27.72

0.5966

Deep Burst

Соль перец

0,1

29.38

0.6604

28.21

0.6308

RAMS

Гаусса

0,025

33.07

0.6938

31.86

0.6813

RAMS

Соль перец

0,1

33.24

0.7214

12.69

0.6565

TR-MISR

Гаусса

0,025

37.36

0.7953

34.13

0.7101

TR-MISR

Соль перец

0,1

38.06

0.8186

36.24

0.7358

После проведения эксперимента было установлено следующее:

— Сеть RAMS справилась лучше с реконструкцией изображений с маленькой временной корреляцией за счет своей архитектуры и направленности именно на реконструкцию снимков ДЗЗ.

— Сеть Deep Burst справилась лучше с реконструкцией изображений, полученных при серийной съемке за счет дополнительного модуля выравнивания.

— Медианная фильтрация помогла существенно уменьшить шум «соль перец» во всех исследуемых методах, даже в сети TR-MISR, где есть Dropout.

— Dropout слои в совокупности с медианной фильтрацией позволили остальным сетям приблизиться к результатам сети TR-MISR.

Литература:

  1. TR-MISR: Multiimage Super-Resolution Based on Feature Fusion With Transformers. — Текст: электронный // arXiv.org: [сайт]. — URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684717 (дата обращения: 16.05.2024).
  2. Deep Burst Super-Resolution. — Текст: электронный // arXiv.org: [сайт]. — URL: https://arxiv.org/pdf/2101.10997v2 (дата обращения: 16.05.2024).
  3. Multi-image Super Resolution of Remotely Sensed Images using Residual Feature Attention Deep Neural Networks. — Текст: электронный // arXiv.org: [сайт]. — URL: https://arxiv.org/pdf/2007.03107v2 (дата обращения: 16.05.2024).
Основные термины (генерируются автоматически): TR-MISR, PSNR, RAMS, SSIM, PROVA-V, RAW, медианная фильтрация, изображение, PROBA-V, RGB.


Ключевые слова

нейронные сети, dropout, построение сверхразрешения, зашумленные изображения, медианная фильтрация

Похожие статьи

Исследование нейросетевых методов построения однокадрового сверхразрешения

В статье автор проводит экспериментальное исследование нейросетевых методов построения однокадрового сверхразрешения.

Распознавание и извлечение 3D-моделей по двумерным изображениям

В статье представлен подход к решению проблемы по извлечению трехмерных объектов из двумерных изображений, при условии, что таких объектов может быть несколько.

Влияние масштабирования на распознавание объектов нейронной сетью ImageAI YOLOv3

Исследовано влияние масштабирования изображения объекта на вероятность правильного распознавания нейронной сетью YOLOv3. Получена оценка минимально допустимого размера объекта на изображении.

Сравнение эффективности использования технологий CUDA и OpenCL при реализации нейронной сети репликации

В статье автор сравнивает эффективность технологий распараллеливания компьютерных вычислений на примере задачи реализации и обучения нейронной сети репликации.

Нейронные сети, обучаемые на основе алгоритма обратного распространения ошибки

В статье приводится обзор алгоритма обучения на основе обратного распространение ошибки. В результате были оценены параметры нейронной сети с применением алгоритма обратного распространение ошибки. Полученные результаты являются примером работы искус...

Нейросетевой подход в задаче обработки данных

В работе рассмотрен подход, основанный на использовании многослойного перцептрона в задаче классификации.

Сравнительный анализ нейронных сетей для генерации изображений высокого качества

В статье проводится сравнительный анализ нейронных сетей для генерации изображений высокого качества в условиях ограниченных вычислительных мощностей.

Восстановление смазанных изображений в условиях ограниченных ресурсов на мобильных платформах

В работе решается задача восстановления смазанных изображений с использованием алгоритмов восстановления изображений в условиях ограниченных ресурсов на мобильных платформах.

Аппаратная реализация искусственных нейронных сетей. Часть 1

Рассмотрены типы искусственных нейронных сетей. Представлены методы аппаратной реализации искусственных нейронных сетей с использованием аналоговых, либо цифровых схем нейрон-синапсов. Представлены выводы о работе данных алгоритмов на основе их аппар...

Сравнение архитектур нейронных сетей в задаче сегментации фигуры человека

Статья посвящена сравнению архитектур нейронных сетей на примере задачи сегментации фигуры человека. Семантическая сегментация — важная область в сфере Computer Vision. Задачи сегментации решаются в таких проектах как: автономный транспорт, умный маг...

Похожие статьи

Исследование нейросетевых методов построения однокадрового сверхразрешения

В статье автор проводит экспериментальное исследование нейросетевых методов построения однокадрового сверхразрешения.

Распознавание и извлечение 3D-моделей по двумерным изображениям

В статье представлен подход к решению проблемы по извлечению трехмерных объектов из двумерных изображений, при условии, что таких объектов может быть несколько.

Влияние масштабирования на распознавание объектов нейронной сетью ImageAI YOLOv3

Исследовано влияние масштабирования изображения объекта на вероятность правильного распознавания нейронной сетью YOLOv3. Получена оценка минимально допустимого размера объекта на изображении.

Сравнение эффективности использования технологий CUDA и OpenCL при реализации нейронной сети репликации

В статье автор сравнивает эффективность технологий распараллеливания компьютерных вычислений на примере задачи реализации и обучения нейронной сети репликации.

Нейронные сети, обучаемые на основе алгоритма обратного распространения ошибки

В статье приводится обзор алгоритма обучения на основе обратного распространение ошибки. В результате были оценены параметры нейронной сети с применением алгоритма обратного распространение ошибки. Полученные результаты являются примером работы искус...

Нейросетевой подход в задаче обработки данных

В работе рассмотрен подход, основанный на использовании многослойного перцептрона в задаче классификации.

Сравнительный анализ нейронных сетей для генерации изображений высокого качества

В статье проводится сравнительный анализ нейронных сетей для генерации изображений высокого качества в условиях ограниченных вычислительных мощностей.

Восстановление смазанных изображений в условиях ограниченных ресурсов на мобильных платформах

В работе решается задача восстановления смазанных изображений с использованием алгоритмов восстановления изображений в условиях ограниченных ресурсов на мобильных платформах.

Аппаратная реализация искусственных нейронных сетей. Часть 1

Рассмотрены типы искусственных нейронных сетей. Представлены методы аппаратной реализации искусственных нейронных сетей с использованием аналоговых, либо цифровых схем нейрон-синапсов. Представлены выводы о работе данных алгоритмов на основе их аппар...

Сравнение архитектур нейронных сетей в задаче сегментации фигуры человека

Статья посвящена сравнению архитектур нейронных сетей на примере задачи сегментации фигуры человека. Семантическая сегментация — важная область в сфере Computer Vision. Задачи сегментации решаются в таких проектах как: автономный транспорт, умный маг...

Задать вопрос