Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Разработка программы измерения для автоматизированного рабочего места по контролю параметров пассивных компонентов

Технические науки
01.05.2024
30
Поделиться
Библиографическое описание
Мухаметгалина, Д. Д. Разработка программы измерения для автоматизированного рабочего места по контролю параметров пассивных компонентов / Д. Д. Мухаметгалина. — Текст : непосредственный // Молодой ученый. — 2024. — № 18 (517). — С. 27-31. — URL: https://moluch.ru/archive/517/113538/.


В современном производстве электроники автоматизация контроля параметров пассивных компонентов играет важную роль. Она позволяет повысить производительность, точность и надежность тестирования, а также снизить влияние человеческого фактора. В данной статье предложена программа измерения, выполненная на базе среды разработки LabVIEW, с использованием библиотеки для работы с аппаратными средствами. Программа позволяет измерять различные параметры пассивных компонентов, такие как сопротивление, емкость, индуктивность, добротность и т. д.

Ключевые слова: автоматизированное рабочее место, контроль параметров, пассивные компоненты.

Пассивные элементы в электронике и электротехнике — это компоненты, которые не способны усиливать или усиливать сигналы в электрических цепях, в отличие от активных элементов, таких как транзисторы или усилители. Они ограничивают, хранят, фильтруют или передают электрическую энергию без изменения ее уровня. К пассивным элементам относятся резисторы, конденсаторы, индуктивности (катушки), а также различные комбинации этих элементов, используемые для создания различных электрических цепей и фильтров. Данные электронные компоненты (ЭК), применяемые в изделиях специального назначения, в аэрокосмической аппаратуре и в радиоэлектронных системах, сопряженных с источниками повышенной опасности (транспорт, экология, энергетика) должны удовлетворять высоким требованиям к надежности их функционирования в жестких условиях эксплуатации.

Контроль электрических параметров ЭК, предназначенных для создания радиоэлектронной аппаратуры (РЭА) высокой надежности, осуществляют изготовители ЭК, начиная от отработки технологии изготовления до выходного контроля, и изготовители РЭА на этапе входного контроля. Особый интерес, с точки зрения повышения надежности РЭА, представляет контроль ЭК, которые должны обеспечить надежное функционирование при работе с токами и напряжениями.

Наиболее универсальными приборами, которые выполняют измерение, расчет и контроль по признаку годности электрических параметров ЭК являются различные аппаратно-программные комплексы и автоматизированные рабочие места для контроля электропараметров электронной компонентной базы. Эти приборы оперативно определяют искомые параметры и их функциональные зависимости путем непосредственного измерения или расчета.

Одним из примеров таких испытательных систем с использованием компьютерного управления может служить комплекс измерительных параметров активных и пассивных электронных компонентов ДМТ-220, предназначенный для измерений электрических параметров активных и пассивных электронных компонентов, который представлен на рис. 1.

Комплекс измерительный параметров активных и пассивных электронных компонентов ДМТ–220

Рис. 1. Комплекс измерительный параметров активных и пассивных электронных компонентов ДМТ–220

В АРМ комплекса посредством отдельных средств измерений под управлением ПЭВМ по шинам GPIB или USB и контактирующих устройств сформированы измерительные каналы для испытания элементов радиоэлектронной аппаратуры. В измерительных каналах комплекса применяют измеритель иммитанса IM3536. Структурная схема АРМ представлена на рис. 2 [1].

Структурная схема комплекса ДМТ-220

Рис. 2. Структурная схема комплекса ДМТ-220

Шина состоит из 24 проводов (рис. 3). Все сигнальные линии используют отрицательную логику: наибольшее положительное напряжение интерпретируется как логический "0", а наибольшее отрицательное — как логическая "1". Конкретные значения напряжения определены стандартом IEEE-488 [2].

Структурная схема интерфейсной шины общего назначения (GPIB)

Рис. 3. Структурная схема интерфейсной шины общего назначения (GPIB)

В качестве объекта измерения рассмотрим резистор постоянный непроволочный Р1–12–0,25–4,7 кОм±5 %-М-«А». Чип-резистор Р1–12 общего применения (рис. 4), предназначен для работы в электрических цепях постоянного, переменного токов и в импульсном режиме. Резистор изготавливается в соответствии с техническими условиями ШКАБ.434110.002 ТУ [3].

Габаритное представление резистора Р1–12–0,25

Рис. 4. Габаритное представление резистора Р1–12–0,25

H = 0,6 мм, B = 1,6 мм, I = 0,4 мм, L = 3,2 мм

Первым шагом на пути к разработке программы измерения является составление алгоритма в соответствии с условными обозначениями, регламентированными ГОСТ 19.701–90.

Блок-схема алгоритма измерения параметров резистора (рис. 5) содержит в себе предопределенный процесс: «Автоматический запуск измерения сопротивления по постоянному току». Блок схема этого предопределенного процесса представлена на рис. 6.

Блок-схема алгоритма измерения электропараметров резистора

Рис. 5. Блок-схема алгоритма измерения электропараметров резистора

Блок-схема процесса «Автоматический запуск измерения сопротивления по постоянному току»

Рис. 6. Блок-схема процесса «Автоматический запуск измерения сопротивления по постоянному току»

Кроме того, данный предопределенный процесс содержит в себе предопределенный процесс «Проверка ГОДЕН/БРАК». Блок-схема данного предопределенного процесса представлена на рис. 7. Принцип проверки следующий: на вход подаются сигналы, инициализируются единицы измерения, заданные критерии годности, проводится измерение. После чего измеренное значение сравнивается с нормами ТУ, результат выдается в форму отчетности в виде «ГОДЕН» или «БРАК».

Блок-схема процесса «Проверка ГОДЕН/БРАК» для

Рис. 7. Блок-схема процесса «Проверка ГОДЕН/БРАК» для

На рис. 8 показан фрагмент блок-схем базового ПО для снятия измерений сопротивления резистора по постоянному току. Базовое ПО предоставляется поставщиком комплекса и разработано на платформе системного проектирования LabVIEW 2012.

Фрагмент блок-схем базового ПО для снятия измерений сопротивления резистора по постоянному току

Рис. 8. Фрагмент блок-схем базового ПО для снятия измерений сопротивления резистора по постоянному току

Предложенный метод снятия электропараметров обладает значительным преимуществами перед ручным методом. В автоматическом режиме измерения электропараметров оператору необходим лишь однократный сбор схемы измерения и запуск программы контроля. Далее от него не требуется никаких действий: все необходимые для снятия электропараметров операции будут проводиться под управлением ПЭВМ.

Подобный метод снятия электропараметров значительно сокращает время на проведение измерений, делает их проведение менее трудозатратным и сводит вероятность ошибки оператора почти к нулю.

Литература:

1. Измерительный комплекс параметров активных и пассивных электронных компонентов ДМТ-220 Руководство по эксплуатации ТИВН 668710.029 РЭ, г. Минск, 2017. — 67 с.

2. Standard Digital Interface for Programmable Instrumentation — Part 2: Codes, Formats, Protocols and Common Commands (Adoption of (IEEE Std 488.2–1992). IEEE. Дата обращения: 29.04.2024 г.

3. ШКАБ.434110.002 ТУ Технические условия на резисторы типа Р12–0,25.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
автоматизированное рабочее место
контроль параметров
пассивные компоненты
Молодой учёный №18 (517) май 2024 г.
Скачать часть журнала с этой статьей(стр. 27-31):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 27-31стр. 73

Молодой учёный