Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Анализ данных на Python

Научный руководитель
Информационные технологии
26.01.2024
289
Поделиться
Библиографическое описание
Абдуллаев, Э. А. Анализ данных на Python / Э. А. Абдуллаев. — Текст : непосредственный // Молодой ученый. — 2024. — № 4 (503). — С. 6-7. — URL: https://moluch.ru/archive/503/110766/.


В статье автор подробно исследует аналитические возможности Python, уделяя внимание ключевым библиотекам и методам, которые делают этот язык таким мощным инструментом для работы с данными.

Ключевые слова: анализ, данные, датасет, алгоритм, библиотеки, машинное обучение, фильтрация, поиск.

Анализ данных на Python — это обширная тема, охватывающая разнообразные техники и инструменты, используемые для извлечения значимой информации из большого объёма данных. Python, благодаря своей легкости и разновидности библиотек [1], стал одним из популярных языков программирования в области анализа данных.

Основные библиотеки Python для анализа данных:

– Pandas;

Самой известной библиотекой в Python для анализа данных является Pandas. Она предоставляет структуры данных и функции для удобной работы с табличными данными. Ядром Pandas являются две структуры данных, в которых происходят все операции: Series и Dataframes. Series — это структура, используемая для работы с последовательностью одномерных данных, а Dataframe — более сложная и подходит для нескольких измерений [2].

С помощью Pandas можно выполнять широкий спектр операций: от простой загрузки и просмотра данных до сложных операций с данными, таких как группировка, слияние, фильтрация и другое.

– NumPy;

NumPy — это библиотека Python, которую применяют для математических вычислений. Она предоставляет поддержку для больших многомерных массивов и матриц, включая различные математические функции для работы с этими массивами [3]. Эффективность NumPy особенно заметна при выполнении сложных математических и статистических операций.

– Matplotlib и Seaborn;

Самая используемая Python-библиотека для визуализации — это Matplotlib. Она очень проста, богата на инструменты и строит статические диаграммы за пару строчек кода, а Seaborn — это библиотека, которая построена на основе Matplotlib, но предоставляет более высокоуровневый интерфейс для создания более информативных статистических графиков. В результате, все что можно построить в Matplotlib, можно построить в Seaborn, но наоборот частично не получится.

Анализ данных на Python представляет собой многоэтапный процесс, каждый этап которого играет важную роль в извлечении главных результатов из первоначальных сырых данных.

Процесс анализа данных на Python:

  1. Подключение нужных нам библиотек, которые могут понадобиться в дальнейшем анализе [4].
  2. Загрузка датасета.

Загрузка датасета является критически важным для обеспечения правильной работы с данными. Датасеты могут быть в различных форматах, например, таких как CSV, Excel и так далее. Выбор формата зависит от исходных данных и требуемой структуры для анализа.

  1. Предварительная обработка и очистка данных.

После загрузки датасета следует этап их предварительной обработки и очистки. Этот этап может включать в себя:

– удаление пропущенных значений, так как определение и обработка отсутствующих данных могут исказить анализ;

– фильтрация и удаление выбросов. Определение и удаление аномальных значений, которые могут быть результатом ошибок или не являются предметом анализа.

  1. Основной анализ данных.

На этом этапе изучаются данные, чтобы лучше их понять [5]:

– статистический анализ. Просмотр описательных статистик, таких как среднее значение, медиана, стандартное отклонение.

– визуализация данных. Использование графиков и диаграмм для визуального представления данных. Библиотеки визуализации, такие как Matplotlib и Seaborn, могут использоваться, например, для создания гистограмм, диаграмм, ящиков с усами (box plots), точечной диаграммы и так далее.

– поиск корреляций. Поиск взаимосвязи между переменными помогает выявить какие показатели зависят друг от друга больше всего и наоборот. Показатель колеблется от -1 до 1, чем ближе к этим границам, то связь сильнее.

– алгоритмы классификации и регрессии.

Классификационные алгоритмы используются для предсказания категориальных меток. Примеры включают логистическую регрессию, деревья решений, случайный лес, нейронные сети. Они применяются для задач, таких как определение, к какому классу принадлежит объект.

Регрессионные алгоритмы используются для прогнозирования непрерывных значений. Примеры включают линейную регрессию, градиентный бустинг и так далее.

  1. Вывод окончательных результатов.

Вывод результатов является финальным и одним из самых важных этапов в процессе анализа данных. Этот этап включает в себя критический анализ полученных результатов, их оценку с точки зрения статистической значимости.

В заключение хотелось бы отметить, что Python является одним из самых предпочтительных языков для анализа данных благодаря своей гибкости и мощным библиотекам. Он предоставляет инструменты для обработки, анализа, визуализации данных, а также для построения сложных моделей машинного обучения и работы с большими данными, что делает его незаменимым инструментом в руках людей. Благодаря этому, Python обладает огромным потенциалом для интеграции с различными источниками данных и платформами, что делает его востребованным не только в академических исследованиях, но и в промышленных приложениях.

Литература:

  1. 19 полезных библиотек для Python — Текст: электронный // Хекслет: [сайт]. — URL: https://ru.hexlet.io/blog/posts/19-bibliotek-dlya-python
  2. Структуры данных в pandas — Текст: электронный // Python.: [сайт]. — URL: https://pythonru.com/biblioteki/struktury-dannyh-v-pandas
  3. NumPy — Текст: электронный // SkillfactoryХабр: [сайт]. — URL: https://blog.skillfactory.ru/glossary/numpy/
  4. 7 самых популярных Python-библиотек для визуализации данных в Data Science — Текст: электронный // Python-school: [сайт]. — URL: https://python-school.ru/blog/python/top7-libraries-for-data-visualization/
  5. Как провести анализ данных в Python — Текст: электронный // sky-pro: [сайт]. — URL: https://sky.pro/media/kak-provesti-analiz-dannyh-v-python/
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
анализ
данные
датасет
алгоритм
библиотеки
машинное обучение
фильтрация
поиск
Молодой учёный №4 (503) январь 2024 г.
Скачать часть журнала с этой статьей(стр. 6-7):
Часть 1 (стр. 1-73)
Расположение в файле:
стр. 1стр. 6-7стр. 73

Молодой учёный