Анализ данных на Python | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 8 февраля, печатный экземпляр отправим 12 февраля.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №4 (503) январь 2024 г.

Дата публикации: 26.01.2024

Статья просмотрена: 231 раз

Библиографическое описание:

Абдуллаев, Э. А. Анализ данных на Python / Э. А. Абдуллаев. — Текст : непосредственный // Молодой ученый. — 2024. — № 4 (503). — С. 6-7. — URL: https://moluch.ru/archive/503/110766/ (дата обращения: 25.01.2025).



В статье автор подробно исследует аналитические возможности Python, уделяя внимание ключевым библиотекам и методам, которые делают этот язык таким мощным инструментом для работы с данными.

Ключевые слова: анализ, данные, датасет, алгоритм, библиотеки, машинное обучение, фильтрация, поиск.

Анализ данных на Python — это обширная тема, охватывающая разнообразные техники и инструменты, используемые для извлечения значимой информации из большого объёма данных. Python, благодаря своей легкости и разновидности библиотек [1], стал одним из популярных языков программирования в области анализа данных.

Основные библиотеки Python для анализа данных:

– Pandas;

Самой известной библиотекой в Python для анализа данных является Pandas. Она предоставляет структуры данных и функции для удобной работы с табличными данными. Ядром Pandas являются две структуры данных, в которых происходят все операции: Series и Dataframes. Series — это структура, используемая для работы с последовательностью одномерных данных, а Dataframe — более сложная и подходит для нескольких измерений [2].

С помощью Pandas можно выполнять широкий спектр операций: от простой загрузки и просмотра данных до сложных операций с данными, таких как группировка, слияние, фильтрация и другое.

– NumPy;

NumPy — это библиотека Python, которую применяют для математических вычислений. Она предоставляет поддержку для больших многомерных массивов и матриц, включая различные математические функции для работы с этими массивами [3]. Эффективность NumPy особенно заметна при выполнении сложных математических и статистических операций.

– Matplotlib и Seaborn;

Самая используемая Python-библиотека для визуализации — это Matplotlib. Она очень проста, богата на инструменты и строит статические диаграммы за пару строчек кода, а Seaborn — это библиотека, которая построена на основе Matplotlib, но предоставляет более высокоуровневый интерфейс для создания более информативных статистических графиков. В результате, все что можно построить в Matplotlib, можно построить в Seaborn, но наоборот частично не получится.

Анализ данных на Python представляет собой многоэтапный процесс, каждый этап которого играет важную роль в извлечении главных результатов из первоначальных сырых данных.

Процесс анализа данных на Python:

  1. Подключение нужных нам библиотек, которые могут понадобиться в дальнейшем анализе [4].
  2. Загрузка датасета.

Загрузка датасета является критически важным для обеспечения правильной работы с данными. Датасеты могут быть в различных форматах, например, таких как CSV, Excel и так далее. Выбор формата зависит от исходных данных и требуемой структуры для анализа.

  1. Предварительная обработка и очистка данных.

После загрузки датасета следует этап их предварительной обработки и очистки. Этот этап может включать в себя:

– удаление пропущенных значений, так как определение и обработка отсутствующих данных могут исказить анализ;

– фильтрация и удаление выбросов. Определение и удаление аномальных значений, которые могут быть результатом ошибок или не являются предметом анализа.

  1. Основной анализ данных.

На этом этапе изучаются данные, чтобы лучше их понять [5]:

– статистический анализ. Просмотр описательных статистик, таких как среднее значение, медиана, стандартное отклонение.

– визуализация данных. Использование графиков и диаграмм для визуального представления данных. Библиотеки визуализации, такие как Matplotlib и Seaborn, могут использоваться, например, для создания гистограмм, диаграмм, ящиков с усами (box plots), точечной диаграммы и так далее.

– поиск корреляций. Поиск взаимосвязи между переменными помогает выявить какие показатели зависят друг от друга больше всего и наоборот. Показатель колеблется от -1 до 1, чем ближе к этим границам, то связь сильнее.

– алгоритмы классификации и регрессии.

Классификационные алгоритмы используются для предсказания категориальных меток. Примеры включают логистическую регрессию, деревья решений, случайный лес, нейронные сети. Они применяются для задач, таких как определение, к какому классу принадлежит объект.

Регрессионные алгоритмы используются для прогнозирования непрерывных значений. Примеры включают линейную регрессию, градиентный бустинг и так далее.

  1. Вывод окончательных результатов.

Вывод результатов является финальным и одним из самых важных этапов в процессе анализа данных. Этот этап включает в себя критический анализ полученных результатов, их оценку с точки зрения статистической значимости.

В заключение хотелось бы отметить, что Python является одним из самых предпочтительных языков для анализа данных благодаря своей гибкости и мощным библиотекам. Он предоставляет инструменты для обработки, анализа, визуализации данных, а также для построения сложных моделей машинного обучения и работы с большими данными, что делает его незаменимым инструментом в руках людей. Благодаря этому, Python обладает огромным потенциалом для интеграции с различными источниками данных и платформами, что делает его востребованным не только в академических исследованиях, но и в промышленных приложениях.

Литература:

  1. 19 полезных библиотек для Python — Текст: электронный // Хекслет: [сайт]. — URL: https://ru.hexlet.io/blog/posts/19-bibliotek-dlya-python
  2. Структуры данных в pandas — Текст: электронный // Python.: [сайт]. — URL: https://pythonru.com/biblioteki/struktury-dannyh-v-pandas
  3. NumPy — Текст: электронный // SkillfactoryХабр: [сайт]. — URL: https://blog.skillfactory.ru/glossary/numpy/
  4. 7 самых популярных Python-библиотек для визуализации данных в Data Science — Текст: электронный // Python-school: [сайт]. — URL: https://python-school.ru/blog/python/top7-libraries-for-data-visualization/
  5. Как провести анализ данных в Python — Текст: электронный // sky-pro: [сайт]. — URL: https://sky.pro/media/kak-provesti-analiz-dannyh-v-python/
Основные термины (генерируются автоматически): анализ данных, данные, CSV, библиотека, визуализация данных, машинное обучение, предварительная обработка, процесс анализа данных, структура данных, этап.


Похожие статьи

Роль SQL в среде облачных баз данных

В статье автор рассмотрел, что такое SQL, его роль в управлении данными, а также преимущества использования SQL в облачных базах данных.

Разработка систем рекомендаций на основе Big Data

В данной статье рассмотрены основные подходы к разработке систем рекомендаций на основе Big Data, включая коллаборативную фильтрацию, контентную фильтрацию и гибридные методы, а также представлены примеры реализации алгоритмов на языке программирован...

Современные программные продукты для анализа данных

В статье представлены особенности современного программного обеспечения для анализа данных и сравнительный анализ программных продуктов.

Язык программирования Python. Библиотеки Python

Язык программирования Python — это высокоуровневый и интерпретируемый язык программирования, который был создан Гвидо Ван Россумом в 1989 году и выпущен в 1991 году, которые «автоматизируют скучные вещи» (как выразилась одна популярная книга по изуче...

Анализ производительности и преимуществ разных подходов в управлении данными SQL и NoSQL

В статье рассмотрены основные особенности двух популярных на сегодняшний день подходов в системах управления базами данных. Также приводятся аргументы и доводы о том, какой подход является более актуальным и выгодным.

Обзор библиотек обучения нейронных сетей на языке Python

В статье даётся обзор самых популярных библиотек машинного обучения языка Python.

Технологии и возможности больших данных

В статье автор рассмотрел ключевые технологии больших данных, а также возможности, которые они могут принести предприятиям, правительствам и отдельным лицам.

Машинное обучение и язык программирования Python

В статье рассматриваются общие сведения о машинном обучении, его основные виды, а также наиболее значительные библиотеки для машинного обучения на языке Python.

Алгоритмы кластеризации в машинном обучении

В статье рассматриваются основные алгоритмы кластеризации в машинном обучении.

PlantUML: создание диаграмм с использованием текстового синтаксиса

В статье автор рассматривает PlantUML как эффективный инструмент для создания диаграмм в разработке программного обеспечения, преимущества использования текстового синтаксиса, разнообразие поддерживаемых диаграмм.

Похожие статьи

Роль SQL в среде облачных баз данных

В статье автор рассмотрел, что такое SQL, его роль в управлении данными, а также преимущества использования SQL в облачных базах данных.

Разработка систем рекомендаций на основе Big Data

В данной статье рассмотрены основные подходы к разработке систем рекомендаций на основе Big Data, включая коллаборативную фильтрацию, контентную фильтрацию и гибридные методы, а также представлены примеры реализации алгоритмов на языке программирован...

Современные программные продукты для анализа данных

В статье представлены особенности современного программного обеспечения для анализа данных и сравнительный анализ программных продуктов.

Язык программирования Python. Библиотеки Python

Язык программирования Python — это высокоуровневый и интерпретируемый язык программирования, который был создан Гвидо Ван Россумом в 1989 году и выпущен в 1991 году, которые «автоматизируют скучные вещи» (как выразилась одна популярная книга по изуче...

Анализ производительности и преимуществ разных подходов в управлении данными SQL и NoSQL

В статье рассмотрены основные особенности двух популярных на сегодняшний день подходов в системах управления базами данных. Также приводятся аргументы и доводы о том, какой подход является более актуальным и выгодным.

Обзор библиотек обучения нейронных сетей на языке Python

В статье даётся обзор самых популярных библиотек машинного обучения языка Python.

Технологии и возможности больших данных

В статье автор рассмотрел ключевые технологии больших данных, а также возможности, которые они могут принести предприятиям, правительствам и отдельным лицам.

Машинное обучение и язык программирования Python

В статье рассматриваются общие сведения о машинном обучении, его основные виды, а также наиболее значительные библиотеки для машинного обучения на языке Python.

Алгоритмы кластеризации в машинном обучении

В статье рассматриваются основные алгоритмы кластеризации в машинном обучении.

PlantUML: создание диаграмм с использованием текстового синтаксиса

В статье автор рассматривает PlantUML как эффективный инструмент для создания диаграмм в разработке программного обеспечения, преимущества использования текстового синтаксиса, разнообразие поддерживаемых диаграмм.

Задать вопрос