Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Об инъекторах нормальных подгрупп конечных групп

Математика
08.06.2023
30
Поделиться
Библиографическое описание
Новикова, Д. Г. Об инъекторах нормальных подгрупп конечных групп / Д. Г. Новикова. — Текст : непосредственный // Молодой ученый. — 2023. — № 23 (470). — С. 1-4. — URL: https://moluch.ru/archive/470/103851/.


Рассматриваются только конечные группы. Пусть — непустое множество простых чисел. В статье для множества Фиттинга заданной группы установлены свойства инъектора в , где — нормальная подгруппа группы .

Ключевые слова: группа, конечная группа, множество Фиттинга группы, нормальная подгруппа, инъектор.

Рассматриваются только конечные группы. В современной теории групп большое внимание уделяется вопросам изучения подгрупп, определяемых посредством заданного класса групп . На этом пути были введены в рассмотрение -корадикалы, -максимальные подгруппы, -проекторы и многие другие подгруппы в группах. Понятие -инъектора группы было введено в рассмотрение в 1967 году в совместной работе Б. Фишера, В. Гашюца и Б. Хартли [12]. В настоящее время -инъекторы в конечных группах достаточно хорошо изучены, установлена их взаимосвязь с другими подгруппами в группах, а также описаны их свойства в зависимости от свойств класса (см., например, [10, 11, 13]). В работах [8, 9] было установлено, что при изучении -инъекторов в группах в качестве можно рассматривать не класс групп, а множество подгрупп исследуемой группы, обладающее некоторыми свойствами классов групп [11, c. 536]. Этот факт привел к возникновению понятия множества Фиттинга группы . Исследования в направлении, связанном с рассмотрением для множества Фиттинга заданной группы её инъекторов, проводились Н. Т. Воробьевым, Т. Б. Карауловой, М. Г. Семеновым и многими другими алгебраистами (см., например, [2, 6, 14]).

В работе [1] в качестве естественного обобщения понятия -проектора группы было введено в рассмотрение понятие -проектора группы, где — непустое множество простых чисел. Развивая данную идею, в работе [7] для класса групп были определены -инъекторы в группах и установлены их ключевые свойства. В статье [4] для множества Фиттинга группы введено в рассмотрение понятие -инъектора группы и установлены простейшие свойства таких подгрупп. Настоящая работа продолжает исследования в данном направлении. В теореме 1 для множества Фиттинга группы получены свойства -инъектора нормальной подгруппы из .

В работе используется терминология, принятая в книгах [3, 11]. Запись , , означает, что — подгруппа (соответственно, нормальная, субнормальная, максимальная нормальная подгруппа) группы .

Определение 1. Непустое множество подгрупп группы называется множеством Фиттинга группы [11, (VIII.2.1)], если выполняются следующие условия:

(1) из и следует, что ;

(2) из , , , следует, что ;

(3) из и следует, что .

Определение 2. Пусть — некоторое множество подгрупп группы . Подгруппа группы называется -максимальной подгруппой в [11, (VIII.2.5.a)], если и из и следует, что .

Определение 3. Пусть — множество подгрупп группы , . Тогда [11, (VIII.2.3.a)].

Замечание 1. Если — множество Фиттинга группы и , то — множество Фиттинга подгруппы [11, (VIII.2.3.a)].

Определение 4 . Пусть — группа, — множество Фиттинга группы , — непустое множество простых чисел. Подгруппа группы называется -инъектором группы , если -максимальная подгруппа в и для каждой субнормальной -подгруппы группы пересечение является -максимальной подгруппой в [4].

Замечание 2. Пусть — группа и — множество Фиттинга группы . Тогда из [11, (VIII.2.5.b)] следует, что всякий -инъектор группы является её -инъектором для любого множества простых чисел. Если совпадает с множеством всех простых чисел, то -инъектор группы является ее -инъектором.

Теорема 1. Пусть — группа, — множество Фиттинга группы , — непустое множество простых чисел, и -инъектор в . Тогда является -инъектором в , для любого .

Доказательство. Пусть — группа, — множество Фиттинга группы , и -инъектор в , . Покажем, что является -инъектором в . Ввиду определения 4, достаточно проверить, что -максимальная подгруппа в и для любой субнормальной -подгруппы из пересечение -максимальная подгруппа в .

  1. Установим, что -максимальная подгруппа в . Так как -инъектор в , то . Из того, что , и — множество Фиттинга группы , получаем (1). Пусть (2), , . Покажем, что . Пусть и . Тогда и . С учётом (2) имеем , т. е. . Покажем, что . Так как и , то по определению 1 (3) . Поскольку -инъектор в , то -максимальная подгруппа в . Тогда и поэтому . Таким образом, -максимальная подгруппа в .
  2. Пусть — субнормальная -подгруппа группы . Установим, что . Согласно (1), . Из по лемме 2.41 [3] получаем, что . Так как — множество Фиттинга группы и , то .
  3. Покажем, что пересечение является -максимальной подгруппой в . Пусть и (3), где . Установим, что . Пусть и . Тогда и . С учётом (3) получаем

(4).

Следовательно, (5). Ввиду леммы 2.14.1 (5) [5], — субнормальная -подгруппа группы . Так как -инъектор в , то -максимальная подгруппа в . Из того, что , и — множество Фиттинга группы , получаем и с учётом (5) приходим к выводу, что . Следовательно, и, ввиду (4), имеем . Поскольку и , то . Таким образом, -максимальная подгруппа в .

Из 1) — 3) следует, что является -инъектором в . Теорема доказана.

Следствие 1 [11, (VIII.2.7.)]. Пусть — группа, — множество Фиттинга группы , и -инъектор в . Тогда является -инъектором в , для любого .

Литература:

  1. Ведерников, В.А. проекторы и покрывающие подгруппы конечных групп / В. А. Ведерников, М. М. Сорокина // Сибирский математический журнал. — 2016. — Т. 57, № 6. — С. 1224–1239.
  2. Воробьев, Н. Т. Множества Хартли и инъекторы конечной группы / Н. Т. Воробьев, Т. Б. Караулова // Математические заметки. — 2019. — Т. 105, № 2. — С. 214–227.
  3. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. — Мн.: Выш. шк., 2006. — 207 c.
  4. Новикова, Д. Г. О множествах Фиттинга и инъекторах конечных групп / Д. Г. Новикова, М. М. Сорокина // Материалы Международной научно-практической конференции «Теоретические и прикладные аспекты естественнонаучного образования в эпоху цифровизации». — Брянск: БГУ им. И. Г. Петровского, 2023. — С. 82–86.
  5. Путилов, С. В. Классы групп / С. В. Путилов, М. М. Сорокина. — Брянск: Белобережье, 2018. — 100 c.
  6. Семенов, М. Г. Инъекторы во множестве Фиттинга конечной группы / М. Г. Семенов, Н. Т. Воробьев // Математические заметки. — 2015. — Т. 97, № 4. — С. 516–528.
  7. Сорокина М. М. О инъекторах конечных групп / М. М. Сорокина, Д. Г. Новикова // Материалы VIII Всероссийской научно-практической конференции с международным участием «Современные проблемы физико-математических наук». — Орёл: ОГУ им. И. С. Тургенева, 2022. — С.194–198.
  8. Anderson, W. Fitting Sets in Finite Soluble Groups / W. Anderson // Ph. D. thesis. — Michigan State University. — 1973. — 270 p.
  9. Anderson, W. Injector in Finite Solvable Groups / W. Anderson // J. Algebra. –1975. — Vol. 36, № 3. — P. 333–338.
  10. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro. — Dordrecht: Springer, 2006. — 381 p.
  11. Doerk, K. Finite Soluble Groups / K. Doerk, T. Нawkes. — Berlin — New York: Walter de Gruyter, 1992. — 891 p.
  12. Fischer, B. Injectoren Endlicher Auflosbarer Cruppen / B. Fischer, W. Gaschutz, B. Hartley // Math. Z. — 1967. — Vol. 102, № 5. — P. 337–339.
  13. Guo, W. The Theory of Classes of Groups / W. Guo. — Beijing — New York: Science Press, 2000. — 251 p.
  14. Yang, N. On -Injectors of Fitting Set of a Finite Group / N. Yang, W. Guo, N. T. Vorob’ev // Communications in Algebra. — 2018. — Vol. 46, № 1. — P. 217–229.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
группа
конечная группа
множество Фиттинга группы
нормальная подгруппа
F^ω‑инъектор
Молодой учёный №23 (470) июнь 2023 г.
Скачать часть журнала с этой статьей(стр. 1-4):
Часть 1 (стр. 1-79)
Расположение в файле:
стр. 1стр. 1-4стр. 79

Молодой учёный