В статье рассматривается способ получения сероуглерода из метана и серы, в качестве совершенствования процесса предложен новый более селективный катализатор.
Ключевые слова: сероуглерод, производство сероуглерода, природный газ, парогазовый процесс, катализатор, синтез сероуглерода.
Сероуглерод является многотоннажным продуктом химической промышленности. Производство сероуглерода началось еще в 20-е годы прошлого столетия и с тех пор развивается, и совершенствуется на сегодняшний день. [1, с. 7]
Молекула сероуглерода имеет линейную симметричную структуру:
S = C = S
Внешний вид: тяжелая бесцветная жидкость. Чистый свежеприготовленный сероуглерод имеет эфирный запах, при долгом хранении запах становится резким
— дипольный момент молекулы равен нулю
— относительная молекулярная масса 76,143
Точки фазового перехода:
— температура плавления минус 111,61±0,03 ˚C
— температура затвердевания минус 116,8 ˚C
— температура кипения минус 46,25±0,01 ˚C
— криоскопическая постоянная Kf = 3,8
— эбулиоскопическая постоянная Kb = 2,37
Механические свойства:
— плотность 1292,7 кг/м3 при 0 ˚C
— плотность в твердом агрегатном состоянии 1539 кг/м3
Критические параметры:
— критическая плотность 𝜌кр = 0,3679 г/см3
— критический объем 2,718 см3/г
— критическая температура tкр = 279 ˚C — наивысшая температура, при которой пары сероуглерода еще могут быть превращены в жидкость.
Диффузия:
— коэффициент диффузии D сероуглерода в воздухе при атмосферном давлении: 0,0892 см2/с при 0 ˚C. [2, с. 6]
Сероуглерод является важным химическим соединением, поскольку он используется для получения других химикатов. Он может действовать как промежуточный химический продукт.
Он также используется в качестве технологического растворителя, например, для растворения фосфора, серы, селена, брома, йода, жиров, смол, восков, лаков и камедей.
Это позволяет, среди прочего, производить фармацевтические продукты и гербициды.
Из сероуглерода получают ксантаты, которые представляют собой соединения, используемые при производстве вискозы и целлофана.
Для получения искусственного шелка или искусственного шелка используется целлюлоза, которую обрабатывают щелочью и сероуглеродом, и она превращается в ксантогенат целлюлозы, растворимый в щелочи. Этот раствор вязкий и поэтому называется «вязким». [3]
Синтез сероуглерода заключается в том, что жидкая сера и очищенный природный газ поступают в змеевик печи синтеза, где начинается частичное взаимодействие паров серы и метана, входящего в состав природного газа.
Синтез сероуглерода протекает в печах, выполненных из стали, футерованных внутри огнеупорным кирпичом. Окончательно реакция проходит в реакторе, заполненном катализатором.
Внутри каждой печи находится змеевик из специальной стали, по которому проходит реакционная смесь. Змеевик обогревается теплом, получаемым в результате сжигания топливного газа в горелках. Для осуществления процесса синтеза сероуглерода в верхний виток змеевика печей подают жидкую серу.
Серу на синтез подают с избытком, расход серы регулируют в зависимости от расхода природного газа. Давление природного газа при подаче его в змеевик печи должно быть в пределах от 2,8 до 7,5 бар.
Температуру реакционной смеси на выходе из печи регулируют в пределах от 650 до 680 ˚С. Подогретая в змеевике парогазовая смесь поступает в верхнюю часть реактора.
Реактор представляет собой вертикальный аппарат, изготовленный из стали, футерованный внутри огнеупорным кирпичом и бетоном, заполненный насадкой (кольцами Рашига) и катализатором.
Температура реакционных газов на выходе из реактора должна быть в пределах от 575 до 645 ˚С. [2, с. 142]
На основании проведенного анализа научно-технической и патентной литературы предложен вариант усовершенствования процесса синтеза сероуглерода путем замены используемого алюмоксидного катализатора на никелевый катализатор состава: 4,7–5,4 % NiO и ~1,3 % активной окиси ɤ-Al 2 O 3 на носителе (технический глинозем ~ 93,6 % общей массы).
Природный газ совместно с парами серы при соотношении CH 4: S 2 = 1: 2,3 пропускают через реактор при температуре 580–680 °С. [4]
При этом конструкция реактора не нуждается в модификации и доработке.
Данный катализатор является более селективным и позволяет получить выход сероуглерода по стадии синтеза равный 98,00 %.
Таблица 1
Сравнение параметров способа промышленного аналога и нового способа получения целевого продукта
Параметр процесса |
Способ производства аналога |
Новый способ |
Давление процесса, бар |
2,8–7,1 |
2,8–7,1 |
Температура процесса, ˚C |
575–680 |
580–680 |
Катализатор |
Алюмоксидный |
Никелевый, состава: 4,7–5,4 % NiO и ~1,3 % активной окиси ɤ-Al 2 O 3 на носителе (технический глинозем ~ 93,6 % общей массы). |
Фазовое состояние системы |
Парогазовый процесс |
Парогазовый процесс |
Мольное соотношение реагентов |
СН 4 : S 2 = 1: 2,158 |
СН 4 : S 2 = 1: 2,3 |
Конверсия по метану |
98,10 % |
98,10 % |
Селективность |
96,94 % |
99,89 % |
Выход по стадии синтеза |
95,10 % |
98,00 % |
Литература:
1 Смуров, В. С. Производство сероуглерода. / В. С. Смуров, А. А. Аранович. — Ленинград: Химия, 1966. — 267 с.
2 Пеликс, А. А. Химия и технология сероуглерода. / А. А. Пеликс, Б. С. Аранович, Е. А. Петров, Р. В. Котомкина. — Ленинград: Химия, 1986. — 224 с
3 Справочник физико-химических свойств — Режим доступа: https://ru1.warbletoncouncil.org/disulfuro-de-carbono-8797 (дата обращения 19.03.2023)
4 Патент NL 014709B1, МПК C01B 31/26, Способ получения сероуглерода / Местерс Каролус Маттиас Анна Мария, Схонебек Рональд Ян; заявитель и патентообладатель ЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б. В. (NL); заявл. 14.05.2007; опубл. 28.02.2011.