Когерентная Машина Изинга и QUBO-решатели | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Библиографическое описание:

Рождественский, Ю. В. Когерентная Машина Изинга и QUBO-решатели / Ю. В. Рождественский. — Текст : непосредственный // Молодой ученый. — 2022. — № 47.1 (442.1). — С. 48-51. — URL: https://moluch.ru/archive/442/96760/ (дата обращения: 16.01.2025).



В статье рассматривается вопрос появления и строения вычислительных машин, предназначенных для решения проблем бинарной оптимизации. Освещается применение Когерентной Машины Изинга как аппаратного средства их реализации и приводятся альтернативные решения.

Ключевые слова: Когерентная Машина Изинга, QUBO-решатель.

The article deals with the issue of the appearance and structure of computers designed to solve problems of binary optimization. The use of the Coherent Ising Machine as a hardware tool for the implementation of QUBO solvers is discussed. The article also provides alternative hardware solutions.

Keywords: Coherent Ising Machine, QUBO solver.

Интерес к области квантовых вычислений, возникший после известной работы Ричарда Фейнмана [1], привел к появлению в последнее время ряда аналоговых симуляторов модели Изинга, на которые могут быть математически отображены известные вычислительные задачи NP сложности.

При решении проблем, связанных с оптимизацией времени вычислений и ускорением работы различных алгоритмов, возникают разные по сложности классы задач:

1) Простейшей категорией из классов сложности является категория проблем разрешимости (decision problems), предполагающая бинарный ответ, «да» или «нет». Если для проблемы разрешимости существует эффективный алгоритм, то проблема относится к классу сложности P (Polynomial timing), что соответствует детерминистическому полиномиальному времени, а алгоритм отождествляется с детерминированной машиной Тьюринга.

2) Второй класс задач — задачи NP — сложности. Если проблема разрешимости такова, что, предложив или обеспечив возможное решение, можно оперативно убедиться, что это решение корректное, тогда проблему относят к классу сложности NP.

3) Третий класс сложности NP, также называют NP-трудный (-hard). Формально говорят, что проблема NP-трудная, если алгоритм для решения такой проблемы может быть эффективно перекодирован в алгоритм для решения любой проблемы в классе NP. Если проблема принадлежит одновременно к классам NP и NP-трудный, ее относят к классу сложности NP-полный (-complete). Грубо говоря, отнесение проблемы к классу NP-полный означает, что с высокой вероятностью не существует эффективного алгоритма для решения примеров в такой проблеме, будь то алгоритм классической или квантовой природы [2].

На настоящий момент самые сложные задачи из класса NP-полный можно решить лишь за экспоненциальное время, что считается неприемлемым с точки зрения вычислений на классическом компьютере. Графическое изображение множеств классов приведено на рис. 1.

Иллюстрация множеств P, NP и NP-трудных классов сложности

Рис. 1. Иллюстрация множеств P, NP и NP-трудных классов сложности

Таким образом для решения NP задач в настоящее время развиваются различные вычислительные машины и методы нового поколения, в том числе квантовые компьютеры. В частности, машины квантового отжига могут искать минимальное значение функции с высокой скоростью.

Такие компьютеры представляют собой физическую систему, реализующую квантовое моделирование поведения набора из N спинов ½ (двухуровневых систем), которое, по предположению Фейнмана, должно быть более эффективным (быстрым), чем соответствующее классическое моделирование. Действительно, поскольку N спинов могут пребывать в 2 N конфигурациях, то вычислительная задача имеет экспоненциальную по N сложность. К таким задачам относится нахождение минимума энергии спинов, которая может быть сведена к проблеме бинарной оптимизации QUBO.

При классическом описании каждый спин может находиться либо в состоянии «вверх», либо в состоянии «вниз». При квантовом описании состояние спина есть кубит — суперпозиция этих двух потенциальных возможностей. На сегодняшний день имеется, несколько подходов к решению задачи оптимизации (нахождения минимума функции энергии) на основе квантовых систем, использующих, с физической точки зрения эффекты квантового туннелирования. На рис. 2 изображена физическая реализация кубита со спином, которая используется при создании симулятора квантового отжига [3].

Упрощенная схема физического кубита, основанная на сверхпроводящем потоке, действующем как квантово-механический спин. Ток, циркулирующий в петле кубита, порождает поток Φ1, кодирующий два различных состояния спина, которые могут существовать в суперпозиции

Рис. 2. Упрощенная схема физического кубита, основанная на сверхпроводящем потоке, действующем как квантово-механический спин. Ток, циркулирующий в петле кубита, порождает поток Φ 1 , кодирующий два различных состояния спина, которые могут существовать в суперпозиции

Вычислительные машины, предназначенные для решения проблем бинарной оптимизации QUBO называются QUBO-решателями. На сегодняшний день доминируют два подхода к созданию такого рода машин: на основе квантовых вентилей (модель квантовых цепей) и на базе квантового отжига (модель адиабатических квантовых вычислений). Эти подходы обычно преподносятся как несвязанные, однако при тщательном изучении можно прийти к выводу, что они могут быть эквивалентны. Тем не менее они заметно отличаются друг от друга, что существенно для получения практического превосходства над классическими компьютерами.

Одним из примеров квантовых аппаратных устройств, предназначенных для решения проблемы бинарной оптимизации QUBO, может служить Когерентная Машина Изинга (CIM). Когерентная машина Изинга — квантовое вычислительное устройство, в котором дискретизированные фазы вырожденных оптических параметрических генераторов (DOPO) используются для моделирования спинов Изинга. В отличие от квантовых отжигов, использующих сверхпроводящие квантовые биты, КМИ может работать при комнатной температуре благодаря использованию высокочастотных оптических генераторов для имитации спинов. В настоящий момент разработана КМИ на 100000 вращений, описанная в работе [4].

Основой КМИ является оптический параметрический генератор DOPO — это оптический генератор, который можно реализовать, поместив фазочувствительный усилитель (PSA) в оптический резонатор. PSA представляет собой оптический усилитель, основанный на оптическом параметрическом усилении и эффективно усиливающий компоненты фазы 0 и π относительно фазы накачки. В результате DOPO принимает значение фазы только 0 или π выше порога колебаний; таким образом, дискретные фазовые состояния можно использовать для представления изинговских спиновых состояний. КМИ, описанный в [4], генерирует тысячи мультиплексированных во времени импульсов DOPO путем включения и выключения PSA, размещенного в 5-километровом оптическом волокне с частотой 1 ГГц (рис. 3). Взаимодействие между импульсами DOPO реализуется с помощью метода, основанного на использовании обратной связи. С помощью этого метода некоторые N импульсов DOPO разделяются с помощью светоделителя для каждого вращения в резонаторе и измеряются амплитуды (со знаками) всех N импульсов DOPO. Результаты измерений вводятся в цифровую схему матричного расчета, где заранее устанавливается матрица спин-спинового взаимодействия (матрица размера N × N) для заданной задачи Изинга. Цифровая схема умножает матрицу и набор N и по результатам измерений позволяет получить сигнал обратной связи для каждого импульса при очередном вращении. Затем мы используем сигнал обратной связи для модуляции оптического импульса, и импульс вводится в соответствующий импульс DOPO внутри резонатора через другой светоделитель для завершения измерения и окончания прохождения круга обратной связи. При повторении этой процедуры обычно в течение 100–1000 вращений в резонаторе комбинация фаз DOPO превращается в фазу, наиболее стабилизирующую всю систему, которая во многих случаях соответствует основному состоянию данного задачи Изинга.

Применение данной вычислительной машины, а также других QUBO-решателей уже нашло применение в таких областях, как:

— Оптимизация производственных процессов [5]

— Оптимизация работы оборудования [6]

— Планирование производства [7]

— Нейросети

— Логистика и грузоперевозки [8]

— Молекулярное моделирование [9]

— Портфельная оптимизация [10]

Помимо КМИ к QUBO-решателям также относятся коммерческие квантовые компьютеры компании D-Wave Systems, основанные на квантовом отжиге. Данные вычислители используют в компаниях Volkswagen AG, Accenture, Lockheed Martin и в ряде других. Также многие крупные консалтинговые фирмы, такие, как BCG, предоставляют отчеты, дорожные карты и инвестиционные планы для области квантовых вычислений [11].

Исходя из приведенного выше, можно сказать, что использование квантовых вычислений на настоящий момент является не только технологических преимуществом, но и стремительно развивающейся областью мирового значения.

Принципиальная схема КМИ. Фазочувствительный усилитель (PSA) усиливает 0- или π-фазовые компоненты входящего света в 5-километровом оптоволоконном кольцевом резонаторе. Включая и выключая PSA с временным интервалом 200 пс, мы генерируем ~ 120 000 импульсов DOPO. Часть энергии импульса разделяется светоделителем для измерения фаз и амплитуд. Для получения сигнала обратной связи для каждого импульса DOPO результаты измерений вводятся в схему быстрого умножения матриц, в которой заранее установлена заданная модельная задача Изинга (матрица 100 512 х 100 512). Сигнал обратной связи используется для модуляции оптического импульса, длина волны которого совпадает с длиной волны импульсов DOPO, и импульс вводится в соответствующий импульс DOPO, циркулирующий в резонаторе [4].

Рис. 3. Принципиальная схема КМИ. Фазочувствительный усилитель (PSA) усиливает 0- или π-фазовые компоненты входящего света в 5-километровом оптоволоконном кольцевом резонаторе. Включая и выключая PSA с временным интервалом 200 пс, мы генерируем ~ 120 000 импульсов DOPO. Часть энергии импульса разделяется светоделителем для измерения фаз и амплитуд. Для получения сигнала обратной связи для каждого импульса DOPO результаты измерений вводятся в схему быстрого умножения матриц, в которой заранее установлена заданная модельная задача Изинга (матрица 100 512 х 100 512). Сигнал обратной связи используется для модуляции оптического импульса, длина волны которого совпадает с длиной волны импульсов DOPO, и импульс вводится в соответствующий импульс DOPO, циркулирующий в резонаторе [4].

Литература:

  1. Feynman R. P. Simulating Physics With Computers By R P Feynman.pdf // Int. J. Theor. Phys. 1982. Т. 21, № 6–7.
  2. Aaronson S. BQP and the Polynomial Hierarchy // Proceedings of the Forty-Second ACM Symposium on Theory of Computing. New York, NY, USA: Association for Computing Machinery, 2010. С. 141–150.
  3. Johnson M. W. и др. Quantum annealing with manufactured spins // Nature. 2011. Т. 473, № 7346.
  4. Toshimori Honjo, Tomohiro Sonobe, Kensuke Inaba, Takahiro Inagaki, Takuya Ikuta, Yasuhiro Yamada, Takushi Kazama, Koji Enbutsu, Takeshi Umeki, Ryoichi Kasahara, Ken-ichi Kawarabayashi, Hiroki Takesue, "100,000-spin coherent Ising machine», Science Advances 7 (40), eabh0952 (2021).
  5. Adamatzky A., Prokopenko M. Slime mould evaluation of Australian motorways // Int. J. Parallel, Emergent Distrib. Syst. Taylor & Francis, 2012. Т. 27, № 4. С. 275–295.
  6. White paper. Optimization of Modern Data Centers using Fujitsu’s Quantum-Inspired Solutiontle. — Текст: электронный // Magdeburg Research and Competence Cluster: [сайт]. — URL: https://www.mrcc.ovgu.de/fileadmin/media/documents/fujitsu_lab/wp-da-dc-optimization-en.pdf (дата обращения 01.11.2022).
  7. Venturelli D., Marchand D. J. J., Rojo G. Quantum Annealing Implementation of Job-Shop Scheduling. arXiv, 2015.
  8. Weinberg, Sean & Sanches, Fabio & Ide, Takanori & Kamiya, Kazumitzu & Correll, Randall. (2022). Supply Chain Logistics with Quantum and Classical Annealing Algorithms.
  9. R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo, et al. Experimental investigation of perfor-mance differences between coherent Ising machines and a quantum annealer Sci. Adv., 5 (2019), p. eaau0823
  10. Mugel S. и др. Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks // Phys. Rev. Res. APS, 2022. Т. 4, № 1. С. 13006.
  11. The Next Decade in Quantum Computing — and How to Play. — Текст: электронный / P. Gerbert, F. Ruess // Strategic Management Consulting: [сайт]. — 2018. — URL: https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play (дата обращения 01.11.2022).
Основные термины (генерируются автоматически): DOPO, PSA, QUBO, обратная связь, бинарная оптимизация, квантовый отжиг, класс сложности, когерентная машина, результат измерений, решение проблем.


Ключевые слова

Когерентная Машина Изинга, QUBO-решатель

Похожие статьи

Моделирование квантового алгоритма Гровера для поиска схемотехнического решения в прикладной программе MATLAB

Целью статьи является ознакомление с разработанной имитационной моделью алгоритма Гровера в прикладной программе MATLAB, а также с результатами его работы, которые представлены в виде вычислений и графиков. Коротко описаны основы квантовых вычислений...

Анализ и оценка рынка устройств на основе мемристоров

В статье рассказывается об истории разработок мемристоров, их предполагаемых свойств, устройствах, использующих в своей работе мемристоры, также проведен анализ современного состояния рынка устройств на основе мемристоров и перспектив его развития.

Анализ средств для реализации нейронных сетей на языке программирования Java

В данной статье рассматриваются основные требования к реализации нейронных сетей, описываются возможности языка Java по созданию компонентов нейронных сетей. Так же приводится анализ и сравнение уже существующих решений для данного языка и производит...

Многопоточность в языке Swift

В статье рассмотрим основной способ выполнять код асинхронно, который используется в iOS приложениях. Подробно разобран основной функционал Grand Central Dispatch (GCD) и сценарии, в которых можно реализовать многопоточность с его помощью.

Разработка приложения для решения задачи о максимальном потоке

В статье представлена процесс разработки пользовательского приложения, решающего задачу поиска максимального потока алгоритмами Форда-Фалкерсона и Эдмонса-Карпа.

Использование сети Хемминга для автоматической коррекции ошибок

В данной статье разработана система коррекции ошибок при вводе данных на основе сети Хемминга, а также рассматривается приложение на языке Java, реализующее данную систему.

Аппаратная реализация искусственных нейронных сетей. Часть 1

Рассмотрены типы искусственных нейронных сетей. Представлены методы аппаратной реализации искусственных нейронных сетей с использованием аналоговых, либо цифровых схем нейрон-синапсов. Представлены выводы о работе данных алгоритмов на основе их аппар...

Сравнение эффективности использования технологий CUDA и OpenCL при реализации нейронной сети репликации

В статье автор сравнивает эффективность технологий распараллеливания компьютерных вычислений на примере задачи реализации и обучения нейронной сети репликации.

Создание системы для OLAP-кубов

В статье автор описывает построение системы, позволяющей быстро внедрять аналитические методы и принимать решения на основе данных.

Ключевые моменты в развитии сверточных нейронных сетей

В данной работе рассматривается архитектуры сети с обходными путями. При этом ключевые моменты исследуются отдельно. И в итоге на основании полученных знаний делается вывод об эффективности использования данного алгоритма.

Похожие статьи

Моделирование квантового алгоритма Гровера для поиска схемотехнического решения в прикладной программе MATLAB

Целью статьи является ознакомление с разработанной имитационной моделью алгоритма Гровера в прикладной программе MATLAB, а также с результатами его работы, которые представлены в виде вычислений и графиков. Коротко описаны основы квантовых вычислений...

Анализ и оценка рынка устройств на основе мемристоров

В статье рассказывается об истории разработок мемристоров, их предполагаемых свойств, устройствах, использующих в своей работе мемристоры, также проведен анализ современного состояния рынка устройств на основе мемристоров и перспектив его развития.

Анализ средств для реализации нейронных сетей на языке программирования Java

В данной статье рассматриваются основные требования к реализации нейронных сетей, описываются возможности языка Java по созданию компонентов нейронных сетей. Так же приводится анализ и сравнение уже существующих решений для данного языка и производит...

Многопоточность в языке Swift

В статье рассмотрим основной способ выполнять код асинхронно, который используется в iOS приложениях. Подробно разобран основной функционал Grand Central Dispatch (GCD) и сценарии, в которых можно реализовать многопоточность с его помощью.

Разработка приложения для решения задачи о максимальном потоке

В статье представлена процесс разработки пользовательского приложения, решающего задачу поиска максимального потока алгоритмами Форда-Фалкерсона и Эдмонса-Карпа.

Использование сети Хемминга для автоматической коррекции ошибок

В данной статье разработана система коррекции ошибок при вводе данных на основе сети Хемминга, а также рассматривается приложение на языке Java, реализующее данную систему.

Аппаратная реализация искусственных нейронных сетей. Часть 1

Рассмотрены типы искусственных нейронных сетей. Представлены методы аппаратной реализации искусственных нейронных сетей с использованием аналоговых, либо цифровых схем нейрон-синапсов. Представлены выводы о работе данных алгоритмов на основе их аппар...

Сравнение эффективности использования технологий CUDA и OpenCL при реализации нейронной сети репликации

В статье автор сравнивает эффективность технологий распараллеливания компьютерных вычислений на примере задачи реализации и обучения нейронной сети репликации.

Создание системы для OLAP-кубов

В статье автор описывает построение системы, позволяющей быстро внедрять аналитические методы и принимать решения на основе данных.

Ключевые моменты в развитии сверточных нейронных сетей

В данной работе рассматривается архитектуры сети с обходными путями. При этом ключевые моменты исследуются отдельно. И в итоге на основании полученных знаний делается вывод об эффективности использования данного алгоритма.

Задать вопрос