В статье представлены данные гидрохимического и гидробиологического мониторинга озера Средний Кабан в зоне влияния сброса термальных вод теплоэлектростанции за период 2017–2021 годы. Оценено качество воды по интегральным индексам ИЗВ, УКИЗВ, гидробиологическим индексам сапробности, биотическому индексу.
Ключевые слова: озеро Средний Кабан, гидрохимический, гидробиологический мониторинг.
Предприятия теплоэнергетического комплекса оказывают значительное воздействие на водные экосистемы принимающих водоемов. Сбросы воды из систем охлаждения оборудования ТЭЦ несут в основном «тепловое» загрязнение. Температура оказывает прямое влияние на скорость протекания химических реакций, на скорость восстановления дефицита кислорода. При ее повышении могут как ускорятся процессы размножения гидробионтов, так и снижаться. Восприимчивость живых организмов к токсичным веществам с повышением температуры обычно увеличивается. С термальными водами в водоем могут попадать и загрязняющие вещества, образующиеся в процессе охлаждения [2, 3, 4].
Целью данной работы было оценить влияние выпуска термальных вод ТЭЦ-1 г. Казани на состояние внутригородского озера Средний Кабан по химическим и гидробиологическим показателям.
Объектом исследования являлась вода озера Средний Кабан в месте выпуска термальных вод ТЭЦ-1. Озеро расположено в центральной части Казани, старично-карстовое, относится к смешанному типу.
Отбор проб воды для анализа проводился в мае, июле, октябре с 2017 по 2021 г. в двух зонах озера:
- место выпуска термальных вод ТЭЦ-1;
- 650 м выше места выпуска.
Химический анализ воды проводили по 27 показателям по стандартным показателям. Одновременно оценивали количественные и качественные показатели фито-, зоопланктона и зообентоса в месте выпуска термальных вод ТЭЦ-1. Экологических показатель определялся по изменению показателя коэффициента динамики деградации качества воды водного объекта в зависимости от антропогенной нагрузки.
Анализ полученных данных показал, что в период с 2017 по 2021 гг. содержание растворенного кислорода было на высоком уровне в обеих зонах и варьировалось в интервале 8,9–15 мгО 2 /л.
По показателю превышения ПДК, установленных для водных объектов хозяйственно-питьевого и культурно-бытового водопользования, наблюдалось устойчивое загрязнение ионами магния, марганца, органическими веществами по ХПК и легкоокисляемыми органическими веществами по БПК 5 (рис. 1).
Рис. 1. Кратность превышения ПДК по отдельным показателям качества воды в месте выпуска термальных вод ТЭЦ-1
В зоне в 650 м выше места выпуска термальных вод наблюдалось устойчивое загрязнение по содержанию органических веществ по ХПК и легкоокисляемых органических веществ по БПК 5 .
Для характеристики качества воды использовались такие индексы как, индекс загрязнения воды (ИЗВ) и удельный комбинаторный индекс загрязненности воды (УКИЗВ) [1]. Расчет ИЗВ в месте выпуска термальных вод теплоэлектростанции показал, что с 2017 по 2021гг. показатель находился в зоне от 1 до 2,5, что характеризует качество воды как «умеренно загрязненная». Лишь в 2019 году качество воды характеризовалось как «чистая». Оценка качества воды второй зоны по интегральному индексу ИЗВ показала, что качество воды в 2017 г. характеризовалось как «чистая», в все остальные года — «умеренно загрязненная».
По индексу УКИЗВ вода в месте выпуска термальных вод ТЭЦ-1 выявлена тенденция к небольшому улучшению качества воды с переходом от «очень грязной» в 2017 г. до «грязной» в 2021 г. Выше места выпуска по показателям УКИЗВ качество воды в течение всего периода наблюдения относилось к категории «очень грязная» (таблица 1).
Таблица 1
Оценка качества воды по удельному показателю комбинаторного индекса загрязнения воды
Год |
2017 |
2018 |
2019 |
2020 |
2021 |
|||||
Зона отбора пробы |
Место выпуска термальных вод ТЭЦ-1 |
Выше места выпуска |
Место выпуска термальных вод ТЭЦ-1 |
Выше места выпуска |
Место выпуска термальных вод ТЭЦ-1 |
Выше места выпуска |
Место выпуска термальных вод ТЭЦ-1 |
Выше места выпуска |
Место выпуска термальных вод ТЭЦ-1 |
Выше места выпуска |
Sобщ |
23,7 |
20,5 |
8,8 |
25,5 |
18,7 |
20,5 |
19,8 |
24,8 |
||
УКИЗВ |
5,9 |
10,25 |
2,9 |
8,5 |
6,2 |
10,25 |
6,6 |
4,9 |
||
Класс/разряд |
4 «а» |
3 «а» |
4 «б» |
4 «б» |
4 «а» |
|||||
Хар-ка состояния |
грязная |
очень грязная |
загрязненная |
очень грязная |
грязная |
очень грязная |
грязная |
грязная |
||
Для гидробиоценозов озера Средний Кабан характерны высокие качественные и количественные показатели развития планктонных сообществ. В составе фитопланктона обнаружено 36 видов водорослей, относящихся к 6-ти отделам. Численность и биомасса фитопланктона варьировалась в зависимости от времени года. Наибольшие значения численности и биомассы наблюдались в июле, а наименьшие в мае. За весь период наблюдения в составе фитопланктона в процентном соотношении преобладали сине-зеленые водоросли.
Для характеристики степени загрязнённости водоема использовался индекс сапробности по фитопланктону. Расчет индекса показал, что за период наблюдения 2017–2020 гг. вода озера характеризовалась как «умеренно загрязненная» (β — мезосапробная зона), а 2021 г. вода характеризовалась как «чистая».
В составе зоопланктона было зарегистрировано 19 видов из 3-х групп: коловратки, ветвистоусые и веслоногие ракообразные. Численность зоопланктона также варьировалась в зависимости от времени года. Наибольшие значения численности наблюдалось в мае, а наименьшее в октябре. За весь период наблюдения в составе зоопланктона в процентном соотношении преобладали коловратки.
Расчет индекса сапробности по показателям зоопланктона показал, что с 2017 по 2019 гг. вода озера характеризовалась как «умеренно загрязненная» (β — мезосапробная зона), а в 2020–2021 гг. как «чистая». Была выявлена тенденция к уменьшению значения показателя сапробности по фитопланктону и зообентосу, что говорит о улучшении качества воды в месте выпуска термальных вод теплоэлектростанции.
В составе зообентоса было обнаружено 23 вида беспозвоночных из 6 групп: олигохеты, моллюски, пиявки, ракообразные, личинок хирономид и личиноки поденок. Наибольшее значение численности было отмечено в октябре, наименьшее в июле. В составе зообентоса в процентном соотношении преобладали олигохеты, моллюски и хирономиды.
По значениям биотического индекса Вудивисса в 2017 г. вода характеризовалась как умеренно загрязненная, в 2018 г. — загрязненная, в 2019 г. — умеренно загрязненная, в 2020 г. — грязная, в 2021 г. — загрязненная.
Оценка экологического состояния озера проводилась на участке озера между зоной выпуска термальных вод и зоной в 650 м выше воздействия ТЭЦ с использованием коэффициента динамики деградации качества воды (Кпан) [5], который показал, что между двумя зонами преобладает процесс самоочищения. Происходит уменьшение значений таких показателей, как ХПК, БПК 5 , содержание аммония, нитратов, нитритов, фосфатов, железа, взвешенных частиц.
Выводы:
- Мониторинг качества воды в месте выпуска термальных вод ТЭЦ-1 в течение 2017–2021 гг. выявил устойчивое превышение ПДК, установленных для водных объектов хозяйственно-питьевого и культурно-бытового водопользования, по ионами магния, марганца, органическими веществам по ХПК и БПК 5
- Качество воды в месте выпуска термальных вод ТЭЦ-1 по интегральному индексу ИЗВ оценивалось как «умеренно загрязненная», по индексу УКИЗВ как «грязная» и «очень грязная».
- Гидробиологический мониторинг показал, что по индексу сапробности по фитопланктону и зоопланктону в месте выпуска термальных вод ТЭЦ-1 прослеживается динамика улучшения качества воды от «умеренно загрязненной» (β — мезосапробная зона) до «чистой», по биотическому индексу — загрязненная-грязная.
- Сравнение химического состава воды в месте и выше выпуска термальных вод ТЭЦ-1 с использованием коэффициента динамики деградации качества воды показал, что между двумя зонами преобладает процесс самоочищения.
Литература:
- Деревенская О. Ю. Методы оценки качества вод по гидробиологическим показателям // учебно-методическая разработка по курсу «Гидробиология». Казань: КФУ, 2015.
- Яныгина Л. В. Экология сообществ донных беспозвоночных в водоемах-охладителях тепловых электростанций Сибири // Водные ресурсы. М, 2011. Т. 38. № 5. С. 618–630.
- Keun-Hyung Choi, Young-Ok Kim, Joon-Baek Lee, Soon-Young Wang, Man-Woo Lee, Pyung-Gang Lee, Dong-Sik Ahn, Jae-Sang Hong, Ho-Young So. Thermal impacts of a coal power plant on the plankton in an open coastal water environment // Journal of Marine Science and Technology, 2012. Vol. 20. No. 2. pp. 187–194.
- POKALE W. K. Effects of thermal power plant on environment // Journal of Scientific Reviews and Chemical Communications, 2012. Vol.2. No.3. pp. 212–215;
- ГОСТ Р 57075–2016 Методология и критерии идентификации наилучших доступных технологий водохозяйственной деятельности, М.: Стандартинформ, 2019 год.