В работе проводится анализ некоторых автономных энергоустановок для выработки тепловой, электрической и механической энергии широкому кругу потребителей. Главными факторами для их оценки являются экологичность, эффективность, коэффициент полезного действия, мощность, производительность, потребность, модернизация.
Ключевые слова: энергоустановки, водогрейные котлы, топливо, газогенератор, электростанция, солнечные и ветровые аккумуляторы, ядерные реакторы, электролизеры, коэффициент полезного действия.
В настоящее время традиционными автономными энергоустановками для выработки тепловой и электрической энергии потребителю (предприятия лесного и сельского хозяйства, нефтеперерабатывающие предприятия, военные объекты и др.) являются водогрейные котлы на твердом, жидком и газообразном топливе с различными соединительными узлами.
Для зимних условий в частности, Западной Сибири, в качестве рабочего тела рекомендуется использовать не техническую воду, а водные растворы, замерзающие при низких отрицательных температурах порядка — 30–50 о С. В противном случае при аварийной ситуации (отключение электричества, выход из строя устройств энергоустановки из-за низкой зимней температуры на улице и др.) энергоустановка может выйти из строя из-за замерзания в ней воды.
К котлам на твердом топливе для достижения наиболее его полного сгорания (до 96–98 %) специалисты предлагают добавлять на входе в котел предтопник — газификатор, например, типа Пинча (Польша). В качестве твердого топлива в основном используются дрова, древесные и растительные отходы, каменный уголь, торф, сланцы. В качестве жидкого топлива используются жидкие нефтяные отходы (разогретый мазут и другие загрязненные нефтяные фракции). В качестве газообразного топлива используются природный газ, генераторный газ из измельченных древесных отходов (мелкие ветки и обрезки, щепа, опил, кора, пни) и прессованных растительных отходов(солома, камыш, трава, отходы водорослей), твердых нефтяных отходов и биогаз из растительных и пищевых отходов. Причем генераторный газ образуется сразу в газогенераторах обращенного горения(Россия), а биогаз в газогенераторах брожения (Германия, Венгрия, Румыния, Китай и др.) образуется в необходимом объеме постепенно в течении нескольких суток и недель с соблюдением плюсового температурного режима и для ускорения процесса газификации нередко применяют специальные бактерии (Китай).
Для выработки, помимо тепловой энергии, электрической энергии в автономных энергоустановках, с целью экономии или особенно удаленных от электроснабжения лесных или сельскохозяйственных поселках, используются дополнительно газовые или газогенераторные электростанции с газогенераторами горения или брожения.
У всех этих энергоустановок один важный экологически вредный недостаток — выделение в атмосферу после сгорания их топлива парникового углекислого газа (СО 2 ) по химическим реакциям:
С а Н b О с N d (тв., ж.)+хО 2 (г.)→ аСО 2 (г.)+ 0,5bН 2 О(ж.) +0,5d N 2 +Q 1 , (1)
где Q 1 — выделившаяся тепловая энергия (в Дж) по реакции (1).
С а Н b (г.)+хО 2 (г.)→ аСО 2 (г.) + 0,5bН 2 О(ж.)+ Q 2 , (2)
где Q 2 — выделившаяся тепловая энергия (в Дж) по реакции (2).
По реакциям (1) и (2) проводится технико-экономический расчет расхода топлива (в кг/час для твердого топлива или в м 3 /час для жидкого или газообразного топлива) для энергоустановок данной тепловой или электрической мощности. На практике уточняется коэффициент полезного действия (η) или КПД энергоустановки с учетом вида, низшей теплотворной способности и особенностей топлива. Дело в том, что теоретический проектировочный расчет КПД энергоустановки является приближенным, нередко существенно отличается от экспериментальных результатов, т. к. не учитывает неизвестные показатели состава топлива, используемого с той или иной местности и др. КПД современных водогрейных котлов на твердом топливе достигает 60–78 %, а водогрейных котлов на газообразном топливе — 80–96 % (Россия, Франция, Германия, Финляндия, Польша, Белоруссия, США, Канада и др.).
В общем виде КПД для различных видов энергоустановок представляет собой долю (η) или процент(η(%)) полезно используемой энергии (Q пол. ) от образующейся в ней или поступившей в нее энергии (Q) и рассчитывается по формуле:
η = Q пол / Q (3)
или
η(%) = 100 % Q пол / Q(4)
Проводится также расчет расхода использования тепловой и электрической энергии от энергоустановок потребителями, например, для удаленных от центрального энергообеспечения, формулу которой можно представить в виде:
fQ пол = Q 1 + Q 2 + Q 3 + … Q n — Q n от ,(5)
где f — cтехиометрический коэффициент;
Q 1, Q 2, Q 3, … Q n — энергия потребляемая пунктами 1,2,3,…. N;
Q n от — тепловые потери в окружающую среду и др.
Необходимо учитывать, что помимо основных продуктов сгорания по реакциям (1) и (2) образуются в некоторых количествах токсичные побочные продукты (например, копоть, угарный газ, оксиды азота и серы, смолы), которые на немногих пока предприятиях (Швейцария, Италия, Германия и др.) улавливаются и утилизируются с помощью специальных устройств.
Хотя углекислый газ улавливается растительностью по реакции фотосинтеза для их роста с выделением газа кислорода (О 2 ), но его содержание в атмосферном воздухе становится с каждым годом с избытком. Газ кислород, как известно, необходим не только для реакции горения топлива, но и важен для жизнедеятельности человека и животного мира. Ряд ученых мира считают, что вулканы делают выброс углекислого газа в атмосферу намного больше, чем при сжигании углеводородного топлива в автономных энергоустановках и на энергоустановках промышленных предприятий. Другие ученые экспериментально подтверждают, что Землю снабжают газом кислородом в основном не наземная растительность, а морские и океанические водоросли, которые из воздушной атмосферы не усваивают углекислый газ).
До настоящего времени наиболее эффективными, технически и экономически выгодными в России являются энергоустановки на природном газе. Россия, особенно Тюменская область, является одной из самых богатых стран мира по газовым ресурсам и их добыче на сотни лет, транспортировке на экспорт. В морях и океанах нашей Земли также имеются богатейшие залежи природного газа в виде твердых газогидратов, которые пока частично используются в качестве топлива (Япония).
На природном газе современные энергоустановки с компьютерными программами могут непрерывно работать практически постоянно в зимний период года, без перерыва до технического осмотра и устранения неполадок, которые зачастую бывают редкими. Оператор (компетентное частное лицо) может на отдаленном расстоянии следить через интернет за работой энергоустановки по расходу топлива, задавать новый необходимый ее режим работы и др.
При работе энергоустановки на твердом топливе (например, древесные отходы, торф) возникают определенные затруднения — оператору необходимо находиться недалеко около энергоустановки и через 2–3 часа ее работы добавлять вручную в топку измельченное твердое топливо. Теперь для облегчения обслуживания имеются энергоустановки с модернизацией — с высоком (3–10 м высотой) металлическим бункером для измельченного твердого топлива, работающий по принципу песочных часов. Этот бункер с открытым дном устанавливается сверху на аналогичное отверстие верхней части металлической топки и герметично закрепляется болтами с термостойкими прокладками. Через верхний герметично закрывающийся люк в бункер на 4/5 его объема загружается измельченное твердое топливо. В процессе сжигания твердое топливо из нижней части бункера поступает самопроизвольно под действием силы тяжести в топку через его верхнее отверстие, где сгорает с выделением тепловой энергии и газообразных продуктов сгорания. Для непрерывной работы объем бункера проектируется для изготовления на 5–7-14 и т. д. дней работы.
Поскольку в России зачастую выпускают водогрейные котлы, работающие одновременно или поочередно на твердом и газообразном топливе, то в зависимости от сезона года и выгодности можно чередовать вид сжигаемого топлива. Если имеются в наличии эти два вида топлива, то потребители зачастую предпочитают использовать в энергоустановке газообразное топливо, видимо, для меньших затрат времени и сил на обслуживание энергоустановки.
В некоторых странах (например, Италия) образующийся побочный продукт — газ водород (Н 2 ) на нефтеперерабатывающих предприятиях используется в транспортной технике (мотороллеры) с учетом техники безопасности. Так как газ водород взрывоопасен, то используется специальное устройство — барбатер с водным раствором, который легко предотвращает его взрывоопасность при соприкосновении с газом кислородом (О 2 ) атмосферного воздуха. Как известно, при сгорании или окислении водорода в кислороде выделяется значительная тепловая энергия и образуется экологически безопасный продукт — вода по химической реакции:
2Н 2 (г.)+О 2 (г.) = 2Н 2 О(г.) + Q,(6)
где, Q — выделяемая тепловая энергия (в Дж) по реакции (6).
В Африке, Португалии, Голландии и др. используют на практике энергоустановки на ветровой и солнечной энергии для выработки электрической энергии. Однако эти установки не всегда работают достаточно эффективно в зависимости от погоды, климатических особенностей, являются дорогостоящими, могут выходить из строя по техническим причинам — в ветровых установках периодически происходит истирание деталей внутри вращающегося устройства, а в солнечных установках периодически засоряются поверхности солнечных батарей пылью и песком, особенно в пустыне. В России частично используются данные виды установок в частных коттеджа, путешественниками в тайге, горах и др.
Из выше изложенного можно сделать вывод, что в настоящее время наиболее эффективными автономными энергоустановками являются установки на природном газе, а экономически выгодными являются автономные энергоустановки на древесных отходах, которые имеют низкую стоимость или стоимость лишь по их доставке потребителю.
Литература:
- Ветров И. М., Шабаров А. Б. Патент РФ № 86592 на полезную модель «Водогрейная установка на газифицируемых древесных отходах». М., 2009 г.