Автор: Шмидт Надежда Михайловна

Рубрика: Педагогика

Опубликовано в Молодой учёный №5 (40) май 2012 г.

Статья просмотрена: 22581 раз

Библиографическое описание:

Шмидт Н. М. Касательная. Задачи на касательную // Молодой ученый. — 2012. — №5. — С. 541-545.

Чтобы правильно и рационально решать задачи, связанные с уравнением касательной, нужно четко понимать, что такое касательная, владеть техникой составления уравнения касательной к графику функции и представлять себе, для решения каких задач (в том числе и задач с параметрами) можно использовать метод касательной.

Опр. 1. Касательной к графику функции у = f(x) называется предельное положение секущей MN при (рис. 1).

Рис. 1

Касательная к кривой может иметь с ней несколько общих точек или пересекать ее. Можно дать и другое определение касательной к кривой.

Опр. 2. Касательной к графику функции у = f(x) в точке A0(x0; f(x0)) называется прямая, проходящая через точку A0, угловой коэффициент которой равен значению производной функции у =f(x) в точке с абсциссой x0.

Уравнение касательной к кривой у = f(x) в точке с абсциссой х0 имеет вид: .

Между понятием касательной и понятие производной имеется тесная связь. Геометрический смысл производной можно выразить так: если функция у = f(x) в точке х0 имеет производную, то в точке с этой абсциссой определена касательная к графику функции , причем ее угловой коэффициент равен . Вывод: если в точке х0 есть производная функции , то в точке с этой абсциссой есть касательная к графику функции и наоборот; если в точке х0 нет производной функции , то в точке с этой абсциссой нет касательной к графику функции и наоборот.

Укажем случаи, когда функция не имеет в точке касательной, и, следовательно, не имеет и производной. Таких случаев три: угловая точка, точка возврата, узловая точка
(рис. 2 а, б, в). Особо отметим случай, когда в точке функция имеет бесконечную производную (рис. 2 г).


угловая точка точка возврата узловая точка

а) б) в) г)

Рис. 2

Рассмотрим решение некоторых задач.

Задачи, связанные с определением того, является ли прямая у = kx + b касательной к графику функции у = f(x). Можно указать два способа решения таких задач.

  1. Находим общие точки графиков, т. е. решаем уравнение f(x) = kx + b, а затем для каждого из его решений вычисляем . В тех случаях, когда = k, имеет место касание, в других — пересечение.

  2. Находим корни уравнения = k и для каждого из них проверяем, выполняется ли равенство f(x) = kx + b. При его выполнении получаем абсциссы точек касания.

Обобщая оба способа, заметим, что для того чтобы прямая у = kx + b была касательной к графику функции у = f(x), необходимо и достаточно существование хотя бы одного числа х0, для которого выполняется система

  1. При каких значениях b прямая у = 3х +b является касательной к графику функции у =?

Решение. Записав условие касания получим

Ответ: .

  1. При каких значениях а прямая у=ах+2 является касательной к графику функции

Указание.

Ответ: а = e-3

  1. При каких значениях а прямая является касательной к графику функции

Указание.

Ответ: а = 7 или а = -1.

  1. Является ли прямая касательной к графику функции ? Если является, то найти координаты точки касания.

Решение. Пусть . Из условия следует, что должны выполняться равенство , где - возможная абсцисса точки касания. Имеем:

Если теперь составить уравнение касательной к графику заданной функции в каждой из двух найденных точек, то окажется, что в точке как раз и получится . Значит, точка касания имеет координаты (1;-1).

  1. К графику функции проведена касательная, параллельная прямой . Найти ординату точки касания.

Решение. . Абсцисса интересующей нас точки касания удовлетворяет уравнению . Имеем:

Таким образом, . Значит, - абсцисса точки касания. Чтобы найти ординату точки касания преобразуем выражение, задающее функцию:

Ответ: 1.

  1. Написать уравнение всех касательных к графику функции , параллельных прямой .

Решение. Так как касательная должна быть параллельна прямой , то ее угловой коэффициент, равный у'(х0), где х0 — абсцисса точки касания, совпадает с угловым коэффициентом данной прямой, т. е. . Отсюда или . Далее составляем уравнение касательной для каждой точки.

Ответ: ,.

  1. Найти все значения , при каждом из которых касательная к графикам функций и в точках с абсциссой параллельны.

Решение. Известно, что тангенс угла наклона касательной к графику функций в точке с абсциссой равен . Следовательно, все искомые значения будут корнями уравнения , откуда . Используя формулу разности синусов углов, будем иметь . Решая полученное уравнение, получаем

  1. Найти расстояние между касательными к графику функции , расположенными параллельно оси .

Решение. Найдем критические точки заданной функции:

Так как, производная в точках и равна нулю, то касательные, проведенные к кривой в точках с этими абсциссами, параллельны оси . Найдем значения функций в этих точках.

Итак, расстояние d между касательными, параллельными оси , равно

С составлением уравнения касательной, параллельной данной прямой, связана задача о нахождении кратчайшего расстояния между графиком некоторой функции f(x) и прямой .

Во многих случаях удается найти касательную к графику , параллельную данной прямой и делящую плоскость на две части, в одной из которых расположен график функции, а в другой — заданная прямая. Тогда кратчайшим расстоянием между графиком функции и прямой является расстояние от точки М(х0; у0), в которой проведена параллельная касательная, до заданной прямой у = kx + b; это расстояние можно вычислить по формуле

  1. Найти кратчайшее расстояние между параболой и прямой

Решение. Убедившись, что графики не имеют общих точек (уравнение не имеет решений), запишем уравнение такой касательной к графику функции , которая параллельна прямой Уравнение касательной имеет вид касание происходит в точке Прямая у = х – 2 и парабола у = х2 расположены по разные стороны от касательной. Таким образом, кратчайшее расстояние между параболой и прямой равно расстоянию от точки М до прямой .

Ответ:

Довольно сложной является задача составления уравнения всех касательных к графику функции у = f(x), проходящих через заданную точку М(х0; у0), вообще говоря, не лежащую на графике. Приведем алгоритм решения этой задачи.

1. Составляем уравнение касательной к графику функции у = f(x) в произвольной точке графика с абсциссой t:

2. Решаем относительно t уравнение и для каждого его решения t записываем соответствующую касательную в виде .

  1. Написать уравнение всех касательных к графику функции , проходящих через точку М(2; -2).

Указание. Уравнение касательной в точке с абсциссой t имеет вид . Так как эта касательная проходит через точку (2; -2), то
, откуда .

Ответ: .

  1. Найти площадь треугольника, образованного касательными, проведенными к графику функции через точку и секущей, проходящей через точки касания.

Указание. Уравнение дает два решения: t1 = 1, t2 = 4. Таким образом, точки K1 (1;1) и K2(4;2) являются точками касания.

Ответ: 0,25.

Говорят, что прямая является общей касательной графиков функции
и , если она касается как одного, так и другого графиков (но совершенно не обязательно в одной и той же точке). Например, прямая является общей касательной графиков функций (в точке М(2; 5) и (в точке K(0,5; -1)). Заметим, что графики функций и имеют в точке их пересечения М(х0; у0) общую невертикальную касательную тогда и только тогда, когда .

  1. Доказать, что параболы и имеют в их общей точке общую касательную. Найти уравнение этой общей касательной. Решение. Уравнение имеет единственный корень х=2, т. е. параболы имеют единственную общую точку М(2;0). Убедимся, что значения производных для обеих функций в точке х = 2 равны; действительно, и . Далее составляем уравнение касательной.

Ответ:.

В завершении рассмотрим решение еще нескольких задач на касательную с параметром.

  1. При каких значениях параметра касательная к графику функции в точке проходит через точку (2;3)?

Решение. Составим уравнение касательной к графику заданной функции в точке : Так как эта прямая проходит через точку (2;3), то имеет место равенство , откуда находим: .

  1. Может ли касательная к кривой в какой-либо ее точке составлять острый угол с положительным направлением оси ?

Решение. Найдем производную функции . В любой точке, в которой функция определена, производная отрицательна. Но производная есть тангенс угла наклона касательной, а так как он отрицателен, то угол тупой.

Ответ: Не может.

  1. Найти значение параметра , при котором касательная к графику функции в точке проходит через точку М(1;7).

Решение. Пусть тогда . Составим уравнение касательной:

По условию эта касательная проходит через точку М(1;7), значит, , откуда получаем:

  1. При каких значениях параметра прямая является касательной к графику функции ?

Решение. Из условия следует, что должно выполнятся равенство где абсцисса точки касания. Значит, и связаны между собой равенством (1). Составим уравнение касательной к графику заданной функции в точке

Из условия следует, что должно выполняться равенство . Решив это уравнение, получим . Тогда из (1) получаем, что .

  1. При каком значении прямая является касательной у графику ?

Решение. Так как прямая является касательной к графику функции , то в точке касания угловой коэффициент касательной равен 3. Но угловой коэффициент касательной равен значению производной функции в этой точке, то есть , откуда , следовательно, - абсцисса точки касания. Найдем теперь из условия равенства значений функций и при . Имеем , откуда .

  1. При каких значениях параметра а касательные к графику функции , проведенные в точках его пересечения с осью оx, образуют между собой угол 60о?

Решение. В этой задаче, как и в предыдущих, речь идет о касательных к графику функции. Составлять уравнение касательной не надо, достаточно использовать геометрический смысл производной, то есть угловые коэффициенты касательных. Графиком данной функции является парабола с ветвями, направленными вверх, пересекающая ось оx в двух точках (случай а=0 нас не устраивает): и учитываем, что х2>0 (рис. 3)

Рис. 3

Касательные АМ и ВМ пересекаются под углом 60о в точке М, лежащей на оси параболы, причем возможны два случая: либо , либо смежный угол равен 60о. в первом случае угол между касательной АО и осью х равен 120о, следовательно, угол коэффициента касательной равен tg120o, то есть равен Далее имеем: . Таким образом, получаем, что , то . Во втором случае , поэтому угол между касательной АО и остью ох равен 150о. Значит, угловой коэффициент касательной равен tg150o , то есть он равен . Таким образом, получаем, что , то есть

Ответ: .


Литература:

  1. Далингер, В.А. Начала математического анализа в задачах [Текст]: учебное пособие / В.А. Далингер. – Омск: Изд-во ГОУ ОМГПУ, 2009. – 312 с.

  2. Звавич, Л.И. Алгебра и начала анализа. 8-11 кл. [Текст]: пособие для школ и классов с углубл. изучением математики / Л. И. Звавич, Л.Я. Шляпочник, М.В. Чинкина.– М.: Дрофа, 1999. – 352 с.

Основные термины (генерируются автоматически): графику функции, уравнение касательной, точки касания, касательной равен, коэффициент касательной равен, Уравнение касательной, угловой коэффициент касательной, абсцисса точки касания, общей касательной, уравнения касательной, наклона касательной, общей касательной графиков, точке касательной, производной функции, точке х0, касательной АО, касательной графиков функции, касательной равен значению, прямая касательной, составления уравнения касательной.

Обсуждение

Социальные комментарии Cackle
Задать вопрос